A study on swirling flows in a rectangular channel (LDV measurement, flow visualization and large eddy simulation)

2001 ◽  
Vol 10 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Kazuyoshi Matsuzaki ◽  
Yasutake Haramoto ◽  
Mizue Munekata ◽  
Hideki Ohba
2000 ◽  
Vol 2000 (0) ◽  
pp. 255
Author(s):  
Kazuyoshi MATSUZAKI ◽  
Mizue MUNEKATA ◽  
Yasutake HARAMOTO ◽  
Hideki OHBA

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yefang Wang ◽  
Fan Zhang ◽  
Shouqi Yuan ◽  
Ke Chen ◽  
Xueyuan Wei ◽  
...  

Abstract In this work, the unsteady Reynolds-averaged Navier–Stokes (URANS) and three hybrid Reynolds-averaged Navier–Stokes-large eddy simulation (RANS-LES) models are employed to resolve the vortical flows in a typical single-stage side channel pump, to evaluate the suitability of these advanced turbulence models in predicting the pump hydraulic performance and unstable swirling flows. By the comparison of the overall performance, it can be observed that the results obtained by scale-adapted simulation (SAS) are closer to test data than shear stress transport (SST), detached eddy simulation (DES) and filter-based model (FBM). Simultaneously, the distribution of axial velocity on the plane near the interface is used to describe the position and intensity of internal fluid exchange between impeller and side channel. It is obvious that the intensity of mass flow exchange is strong near the inner and outer edges. Then, the vortex core region illustrates that the vortex is easily produced near the interface due to internal fluid exchange. Finally, the evolutions of circumferential in-plane vortical structures are presented to further account for the process of fluid exchange and the main vortex flows. It reveals that the recirculation flow presents a strong instability during 6–7 blade pitches as the fluid enters into the impeller and the flow is stable in downstream 7–8 blade pitches. Besides, the flow turns to be unsteady near outlet affected by the sudden change of fluid direction. This work could provide some suggestions for the choice of appropriate turbulence model in simulating strong swirling flows.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2793-2808
Author(s):  
Hussain Al-Kayiem ◽  
Desmond Lim ◽  
Jundika Kurnia

Sharkskin-inspired riblets are widely adopted as a passive method for drag reduc?tion of flow over surfaces. In this research, large eddy simulation of turbulent flow over riblet-structured surface in a rectangular channel domain were performed at various Reynolds numbers, ranging from 4200-10000, to probe the resultant drag change, compared to smooth surface. The changes of mean streamwise velocity gradient in wall-normal direction at varied locations around riblet structures were also investigated to reduce mechanisms of streamlined riblet in reducing drag. The computational model is validated by comparing the simulation results against analytical and experimental data, for both smooth and riblet surfaces. Results in?dicating that the performance of the proposed streamlined riblet shows 7% drag reduction, as maximum, which is higher than the performance of L-shaped riblet with higher wetted surface area. The mean velocity profile analysis indicates that the streamlined riblet structures help to reduce longitudinal averaged velocity component rate in the normal to surface direction of near-wall region which leads to laminarization process as fluid-flows over riblet structures.


Sign in / Sign up

Export Citation Format

Share Document