structured surface
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 90)

H-INDEX

26
(FIVE YEARS 4)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Destin Bamokina Moanda ◽  
Martin Lehmann ◽  
Peter Niemz

Although glueing softwood is well mastered by the industry, predicting and controlling bond quality for hardwood is still challenging after years of research. Parameters such as the adhesive type, resin–hardener ratio, and the penetration behaviour of the wood are determinants for the bond quality. The aim of this work was to assess to what extent the glueing behaviour of beechwood can be improved by using structural planing. The different surfacing methods were characterised by their roughness. The bond strength of the micro-structured surfaces was determined according to EN 302-1, and the delamination resistance was tested as indicated by EN 302-2 for type I adhesives. Micro-structured surfaces were compared with different surfaces (generated by surfacing methods such as dull/sharp planing and sanding). In dry test conditions, all surfacing methods gave satisfying results. In the wet stage, the bond strength on the finer micro-structured surface slightly outperformed the coarse structure surface. For the delamination resistance, a clear improvement could be observed for melamine-formaldehyde-bonded specimens since, when using the recommended amount of adhesive, micro-structured surfaces fulfilled the requirements. Nevertheless, structural planing cannot lead to a reduction in the applied grammage since no sample with a smaller amount fulfilled EN 302-2 requirements even by observing the recommended closed assembly waiting time. Adhesion area enlargement of the micro-structuring is minor. The good delamination performance without waiting time (CAT) is not caused by surface enlargement, since finer micro-structured surface with negligible area increase and delivered even better delamination resistance. Subsurface analysis should be carried out to thoroughly investigate this phenomenon.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012141
Author(s):  
N I Pecherkin ◽  
A N Pavlenko ◽  
O A Volodin ◽  
A I Kataev ◽  
I B Mironova ◽  
...  

Abstract The paper presents investigation results about the influence of various methods of surface treatment on heat transfer enhancement in falling films of R21 Freon on an array of horizontal tubes. The experiments were carried out on the aluminum alloy tubes with a ceramic coating obtained by micro-arc oxidation and on copper tubes with a structured surface, treated by deformational cutting. The experiments were carried out in a regime of turbulent film flow at Reynolds numbers from 400 to 1500. The results of measuring the heat transfer coefficients on the surface of samples with a developed surface and on the standard smooth tube are compared. The highest values of heat transfer coefficients in falling films during nucleate boiling were obtained on a structured surface with semi-closed cavities. Heat transfer enhancement on the surface of a tube made of alloy D16T with the MAO coating of 30 μm thick, obtained in a silicate-alkaline electrolyte, is comparable to heat transfer enhancement on the surface of copper tubes with a microstructure applied by the deformational cutting method.


Author(s):  
Taeyang Han ◽  
Younghyun Choi ◽  
Kyung Mi Na ◽  
Moo Hwan Kim ◽  
HangJin Jo
Keyword(s):  

2021 ◽  
pp. 131003
Author(s):  
Nicholas T. Klokkou ◽  
David J. Rowe ◽  
Bethany M Bowden ◽  
Neil P Sessions ◽  
Jonathan J. West ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document