Dry Sliding Wear Study of Solid Lubricants and Sillimanite-Reinforced Aluminum Alloy Composites

Author(s):  
Varun Singhal ◽  
O. P. Pandey
Wear ◽  
2014 ◽  
Vol 316 (1-2) ◽  
pp. 37-48 ◽  
Author(s):  
S. Mahathanabodee ◽  
T. Palathai ◽  
S. Raadnui ◽  
R. Tongsri ◽  
N. Sombatsompop

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
N. Radhika ◽  
R. Raghu

LM13/AlN (10 wt. %) metal matrix composites (MMC) and unreinforced aluminum alloy were produced under stir casting route. Microstructural characteristics were examined on the developed composite using optical microscope. The hardness and tensile test were carried out on both unreinforced aluminum alloy and composite using Vickers hardness tester and universal testing machine (UTM), respectively. Dry sliding wear behavior of the composite and unreinforced aluminum alloy was evaluated using pin-on-disk tribometer based on the design of experiments approach. Experimental parameters such as applied load (10, 20, and 30 N), velocity (1, 2, and 3 m/s), and sliding distance (500, 1000, and 1500 m) were varied for three levels. Signal-to-noise (S/N) ratio analysis, analysis of variance, and regression analysis were also performed. The characterization results showed that reinforcement particles were uniformly distributed in the composite. The hardness and tensile test revealed greater improvement of property in composite compared to that of unreinforced alloy. Wear plot showed that wear was increased with increase in load and decreased with increase in velocity and sliding distance. S/N ratio analysis and analysis of variance (ANOVA) indicated that load has greater significance over the wear rate followed by velocity and sliding distance. Regression analysis revealed greater adequacy with the constructed model in predicting the wear behavior of composite and unreinforced aluminum alloy. Scanning electron microscopy (SEM) analysis is evident that the transition of wear from mild to severe occurred on increase of the load in the composite.


2018 ◽  
Vol 877 ◽  
pp. 118-136 ◽  
Author(s):  
Ashiwani Kumar ◽  
Amar Patnaik ◽  
I.K. Bhat

In the current research work, the influence of titanium metal powder on wear beheviour of Al 7075 composites is investigated. These composites were fabricated by using the high vacuum casting machine. The Tribological beheviour of titanium metal powder aluminum alloy composites was investigated by performing dry sliding experiments as a function of wear with a E-31 harden steel disk( 62 HRC) as the counterpart on pin on disk machine . Wear experiments were performed for normal load of 20, 35, 50 , 65 and 80 N at sliding velocities of 0.25, 0.5, 0.75, 1, 1.25 m/s and sliding distance (250 ,500, 750, 1000 and 1250 m at room temperature. The tests were performed on Taguchi’s L25 orthogonal array and the effect of working parameters on wear rate was studied using ANOVA. To investigate the dominant sliding wear mechanism for different steady state experiment conditions, the SEM micrograph of worn surfaces were analyzed using scanning electron microscopy. The wear rate was found to minimum as compared to unfilled alloy and the wear resistance improves the aluminum alloy composites. Finally, it was investigated that the analysis of microstructure and wear properties of titanium metal powder filled alloy composite.


2017 ◽  
Vol 5 (2) ◽  
pp. 127-135 ◽  
Author(s):  
J. Allwyn Kingsly Gladston ◽  
I. Dinaharan ◽  
N. Mohamed Sheriff ◽  
J. David Raja Selvam

Sign in / Sign up

Export Citation Format

Share Document