tensile test
Recently Published Documents


TOTAL DOCUMENTS

2221
(FIVE YEARS 494)

H-INDEX

40
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 551
Author(s):  
Zdeněk Pitrmuc ◽  
Jan Šimota ◽  
Libor Beránek ◽  
Petr Mikeš ◽  
Vladislav Andronov ◽  
...  

This paper aims at an in-depth and comprehensive analysis of mechanical and microstructural properties of AISI 316L austenitic stainless steel (W. Nr. 1.4404, CL20ES) produced by laser powder bed fusion (LPBF) additive manufacturing (AM) technology. The experiment in its first part includes an extensive study of the anisotropy of mechanical and microstructural properties in relation to the built orientation and the direction of loading, which showed significant differences in tensile properties among samples. The second part of the experiment is devoted to the influence of the process parameter focus level (FL) on mechanical properties, where a 48% increase in notched toughness was recorded when the level of laser focus was identical to the level of melting. The FL parameter is not normally considered a process parameter; however, it can be intentionally changed in the service settings of the machine or by incorrect machine repair and maintenance. Evaluation of mechanical and microstructural properties was performed using the tensile test, Charpy impact test, Brinell hardness measurement, microhardness matrix measurement, porosity analysis, scanning electron microscopy (SEM), and optical microscopy. Across the whole spectrum of samples, performed analysis confirmed the high quality of LPBF additive manufactured material, which can be compared with conventionally produced material. A very low level of porosity in the range of 0.036 to 0.103% was found. Microstructural investigation of solution annealed (1070 °C) tensile test samples showed an outstanding tendency to recrystallization, grain polygonization, annealing twins formation, and even distribution of carbides in solid solution.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 136
Author(s):  
Meng Sun ◽  
Zhouhua Jiang ◽  
Yang Li ◽  
Changyong Chen ◽  
Shuai Ma ◽  
...  

To clarify the effect of sulfur on inclusions and mechanical properties of Ce-Mg treated resulfurized SCr420H steel. Laboratory experiments were conducted to prepare steels with sulfur contents as 0.01%, 0.06%, and 0.132%. Inclusion evolution in liquid steel, MnS precipitation during solidification, and tensile test results of steel after quenching and tempering were investigated. The results showed that due to the limitation of mass transfer in molten steel, composite inclusion that Ce-O-S wrapped by Ce-Ca-Mg-Al-Si-O, which was named transition state inclusions, can form quickly after adding Ce-Mg lump to the molten steel. As the homogenization of molten steel, the difference of sulfur content in steel can lead to the transition state inclusions transformed into different inclusions. With the increase of sulfur content, the quantity of MnS increased significantly, and the morphology of MnS transformed from “stick” to “dendritic + fishbone”, and then to “fishbone”. Tensile test results and fracture analysis indicate that the decline of inclusion spacing as the increase of sulfur content leads to a shorter physical path of crack propagation in steel. Therefore, the increase of sulfur content can bring about a decrease in the strength and plasticity of the steel. From the perspective of inclusion control, making the MnS inclusion precipitate more dispersive and increasing the distance between inclusions can be considered as a method for preventing the decline of mechanical properties in steel with high sulfur content.


2022 ◽  
Vol 58 (4) ◽  
pp. 1-8
Author(s):  
Cosmin Mihai Miritoiu ◽  
Marius Marinel Stanescu ◽  
Dumitru Bolcu ◽  
Alexandru Ioan Radoi ◽  
Claudiu Nicolicescu ◽  
...  

In this paper we have created some composites reinforced with corn cob powder and the matrix was made by a combination between Resoltech 1050 resin with its Resoltech 1058 hardener. For the composites manufacturing, we have used the manual casting technique. For the new manufactured composites, we have determined the mechanical properties from the tensile test according to ASTM D3039: Young modulus, breaking strength and elongation at break. We have also molded samples for the compression test according to ASTM D695-15 and we have determined the breaking strength. The tensile and compression tests were made on universal testing machines. In the end, we have determined also the dynamic mechanical properties for the studied material by clamping the samples at one edge and leaving the samples unconstrained at the other edge. At the unconstrained edge we have placed a Bruel&Kjaer accelerometer which recorded the samples free vibrations. From the free vibrations recording and Euler-Bernoulli theory, we have determined the next dynamic mechanical properties: damping factor per unit mass and length, eigenfrequency, dynamic modulus of elasticity, loss factor and dynamic rigidity. From the experimental results, we have obtained increased breaking strength values for the proposed material at compression compared to the tensile test. Compared to similar materials studied in the engineering literature, we have obtained increased compression breaking strength.


2022 ◽  
Vol 960 (1) ◽  
pp. 012008
Author(s):  
Gina Mihaela Sicoe

Abstract In test laboratories, the characteristics of the sheets shall be determined by the tensile test on specimens taken in the direction perpendicular to the rolling direction, and these characteristics shall be used as the date of entry into the process of calculating the parts made of the sheet. In the case of parts with special characteristics such as safety parts in the automotive industry, or for mechanically stressed parts in a certain direction, it is important to know precisely the values of the mechanical characteristics of the sheet in relation to the rolling direction, so as to ensure the required resistance. Also, in the case of stamped parts, their quality is all the better the lower the anisotropy. The paper presents the results of experimental research on the mechanical characteristics of the sheet DC04 with a thickness of 0,65 mm, determined by tensile testing on sets of 7 test specimens, taken every 15 degrees from the rolling direction.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Eko Nugroho ◽  
Eko Budiyanto ◽  
Aji Dawam Firdaus

Aluminum is one of the most widely used non-ferrous metals in industry and engineering because of its light weight and resistance to corrosion. The purpose of this study is to change the waste of used motor pistons using an induction furnace by recycling or remelting the material and adding a mixture of silicon with variations of 8%, 10% and 12% to improve its mechanical properties. In this research, I used the main furnace for the smelting. The results of this study in the tensile test showed that the strength and wear strength increased with the addition of silicon elements but became brittle and stiff this happened because the value of the elastic modulus decreased with the addition of silkon elements, namely at 12% at 1.06 N/mm² and at a variation of 8 % of 1.13 N/mm². In the hardness test, it was found that the addition of silicon to aluminum with variations of 8%, 10% and 12% increased the hardness of the material.


2021 ◽  
pp. 002199832110595
Author(s):  
Nastaran Bahrami-Novin ◽  
Ehsan Mahdavi ◽  
Mahdi Shaban ◽  
Hashem Mazaheri

Corrugated sheets with optimized mechanical properties are crucial for lightweight design in industrial applications. This study considered and optimized a corrugated sheet with a sinusoidal profile to enhance elastic modulus, tensile-bending coupling, and weight reduction. For this aim, first, flat specimens consisting of E-glass woven fiber and epoxy resin were made by hand lay-up method, following ASTM D3039. The tensile test determined young’s modulus of flat samples. Afterward, two molds with supports were fabricated. The corrugated specimens were constructed and exposed to a standard tensile test. The finite element analysis was used to simulate the tensile test of corrugated samples. The numerical force-displacement curve is derived from numerical analysis and verified by experimental results. After that, two multi-objective optimization problems, mass-constraint and global optimization, were implemented. Analytical formulations were verified by numerical and experimental results and utilized for optimization purposes. The genetic algorithm was used to examine and confirm trade-off behavior between objective functions. The Pareto fronts diagrams for mentioned two multi-objective optimization problem were obtained. Finally, the optimum parameters are calculated by using the LINMAP (Linear Programming Technique for Multi-dimensional Analysis of Preference) method.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2053
Author(s):  
Noriyuki Tsuchida ◽  
Stefanus Harjo

It is important to control the deformation-induced martensitic transformation (DIMT) up to the latter part of the deformation to improve the uniform elongation (U.El) through the TRIP effect. In the present study, tensile tests with decreasing deformation temperatures were conducted to achieve continuous DIMT up to the latter part of the deformation. As a result, the U.El was improved by approximately 1.5 times compared with that in the tensile test conducted at 296 K. The enhancement of the U.El in the temperature change test was discussed with the use of neutron diffraction experiments. In the continuous DIMT behavior, a maximum transformation rate of about 0.4 was obtained at a true strain (ε) of 0.2, which was larger than that in the tensile test at 296 K. The tensile deformation behavior of ferrite (α), austenite (γ), and deformation-induced martensite (α′) phases were investigated from the viewpoint of the fraction weighted phase stress. The tensile test with a decreasing deformation temperature caused the increase of the fraction weighted phase stress of α and that of α′, which was affected by the DIMT behavior, resulting in the increase in the work hardening, and also controlled the ductility of α and α′, resulting in the enhancement of the U.El. Especially, the α phase contributed to maintaining high strength instead of α′ at a larger ε. Therefore, not only the DIMT behavior but also the deformation behavior of γ, α, and α′ are important in order to improve U.El due to the TRIP effect.


Sign in / Sign up

Export Citation Format

Share Document