scholarly journals Does the accuracy of pedicle screw placement differ between the attending surgeon and resident in navigated robotic-assisted minimally invasive spine surgery?

2019 ◽  
Vol 14 (4) ◽  
pp. 567-572 ◽  
Author(s):  
Arnold B. Vardiman ◽  
David J. Wallace ◽  
Grant A. Booher ◽  
Neil R. Crawford ◽  
Jessica R. Riggleman ◽  
...  

Abstract Robotic assistance with integrated navigation is an area of high interest for improving the accuracy of minimally invasive pedicle screw placement. This study analyzes the accuracy of pedicle screw placement between an attending spine surgeon and a resident by comparing the left and right sides of the first 101 consecutive cases using navigated robotic assistance in a private practice clinical setting. A retrospective, Institutional Review Board-exempt review of the first 106 navigated robot-assisted spine surgery cases was performed. One attending spine surgeon and one resident performed pedicle screw placement consistently on either the left or right side (researchers were blinded). A CT-based Gertzbein and Robbins system (GRS) was used to classify pedicle screw accuracy, with grade A or B considered accurate. There were 630 consecutive lumbosacral pedicle screws placed. Thirty screws (5 patients) were placed without the robot due to surgeon discretion. Of the 600 pedicle screws inserted by navigated robotic guidance (101 patients), only 1.5% (9/600) were repositioned intraoperatively. Based on the GRS CT-based grading of pedicle breach, 98.67% (296/300) of left-side screws were graded A or B, 1.3% (4/300) were graded C, and 0% (0/300) were graded D. For the right-side screws, 97.67% (293/300) were graded A or B, 1.67% (5/300) were graded C, and 0.66% (2/300) were graded D. This study demonstrated a high level of accuracy (based on GRS) with no significant differences between the left- and right-side pedicle screw placements (98.67% vs. 97.67%, respectively) in the clinical use of navigated, robot-assisted surgery.

2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


2022 ◽  
Vol 52 (1) ◽  
pp. E4

OBJECTIVE The accuracy of percutaneous pedicle screw placement has increased with the advent of robotic and surgical navigation technologies. However, the effect of robotic intraoperative screw size and trajectory templating remains unclear. The purpose of this study was to compare pedicle screw sizes and accuracy of placement using robotic navigation (RN) versus skin-based intraoperative navigation (ION) alone in minimally invasive lumbar fusion procedures. METHODS A retrospective cohort study was conducted using a single-institution registry of spine procedures performed over a 4-year period. Patients who underwent 1- or 2-level primary or revision minimally invasive surgery (MIS)–transforaminal lumbar interbody fusion (TLIF) with pedicle screw placement, via either robotic assistance or surgical navigation alone, were included. Demographic, surgical, and radiographic data were collected. Pedicle screw type, quantity, length, diameter, and the presence of endplate breach or facet joint violation were assessed. Statistical analysis using the Student t-test and chi-square test was performed to evaluate the differences in pedicle screw sizes and the accuracy of placement between both groups. RESULTS Overall, 222 patients were included, of whom 92 underwent RN and 130 underwent ION MIS-TLIF. A total of 403 and 534 pedicle screws were placed with RN and ION, respectively. The mean screw diameters were 7.25 ± 0.81 mm and 6.72 ± 0.49 mm (p < 0.001) for the RN and ION groups, respectively. The mean screw length was 48.4 ± 4.48 mm in the RN group and 45.6 ± 3.46 mm in the ION group (p < 0.001). The rates of “ideal” pedicle screws in the RN and ION groups were comparable at 88.5% and 88.4% (p = 0.969), respectively. The overall screw placement was also similar. The RN cohort had 63.7% screws rated as good and 31.4% as acceptable, while 66.1% of ION-placed screws had good placement and 28.7% had acceptable placement (p = 0.661 and p = 0.595, respectively). There was a significant reduction in high-grade breaches in the RN group (0%, n = 0) compared with the ION group (1.2%, n = 17, p = 0.05). CONCLUSIONS The results of this study suggest that robotic assistance allows for placement of screws with greater screw diameter and length compared with surgical navigation alone, although with similarly high accuracy. These findings have implied that robotic platforms may allow for safe placement of the “optimal screw,” maximizing construct stability and, thus, the ability to obtain a successful fusion.


2019 ◽  
Vol 14 (4) ◽  
pp. 643-647 ◽  
Author(s):  
Kade T. Huntsman ◽  
Jessica R. Riggleman ◽  
Leigh A. Ahrendtsen ◽  
Charles G. Ledonio

Abstract Minimally invasive lateral interbody fusion has distinct advantages over traditional posterior approaches. When posterior stabilization is needed, percutaneous placement of pedicle screws from the lateral decubitus position may potentially increase safety and improve operative efficiency by precluding the need for repositioning. However, safe placement of pedicle screws in the lateral position remains technically challenging. This study describes the pedicle screw placement of single-position lateral lumbar interbody fusion (SP-LLIF) cases in which navigated robotic assistance was used. A single-surgeon, single-site, retrospective Institutional Review Board-exempt review of the first 55 SP-LLIF navigated robot-assisted spine surgery cases performed by the lead author was conducted. An orthopaedic surgeon evaluated screw placement using plain film radiographs. In addition, pedicle screw malposition, reposition, and return to operating room (OR) rates were collected. In the first 55 SP-LLIF cases, 342 pedicle screws were placed. The average patient age and body mass index were 67 years and 29.5 kg/m2, respectively. Of the 342 screws placed, 4% (14/342) were placed manually without the robot, due to surgeon discretion. Of the 328 screws placed with the robot, 2% (7/328) were repositioned based on the surgeon’s discretion, resulting in a 98% navigated robot-assisted pedicle screw placement success rate. In this cohort there were no revisions due to malpositioned screws. No complications due to screw placement were reported. This study demonstrates a high level (98%) of successful surgeon-assessed pedicle screw placement in minimally invasive navigated robot-assisted SP-LLIF, with no malpositions requiring a return to the OR.


2017 ◽  
Vol 42 (5) ◽  
pp. E4 ◽  
Author(s):  
Timur M. Urakov ◽  
Ken Hsuan-kan Chang ◽  
S. Shelby Burks ◽  
Michael Y. Wang

OBJECTIVESpine surgery is complex and involves various steps. Current robotic technology is mostly aimed at assisting with pedicle screw insertion. This report evaluates the feasibility of robot-assisted pedicle instrumentation in an academic environment with the involvement of residents and fellows.METHODSThe Renaissance Guidance System was used to plan and execute pedicle screw placement in open and percutaneous consecutive cases performed in the period of December 2015 to December 2016. The database was reviewed to assess the usability of the robot by neurosurgical trainees. Outcome measures included time per screw, fluoroscopy time, breached screws, and other complications. Screw placement was assessed in patients with postoperative CT studies. The speed of screw placement and fluoroscopy time were collected at the time of surgery by personnel affiliated with the robot’s manufacturer. Complication and imaging data were reviewed retrospectively.RESULTSA total of 306 pedicle screws were inserted in 30 patients with robot guidance. The average time for junior residents was 4.4 min/screw and for senior residents and fellows, 4.02 min/screw (p = 0.61). Among the residents dedicated to spine surgery, the average speed was 3.84 min/screw, while nondedicated residents took 4.5 min/screw (p = 0.41). Evaluation of breached screws revealed some of the pitfalls in using the robot.CONCLUSIONSNo significant difference regarding the speed of pedicle instrumentation was detected between the operators’ years of experience or dedication to spine surgery, although more participants are required to investigate this completely. On the other hand, there was a trend toward improved efficiency with more cases performed. To the authors’ knowledge, this is the first reported academic experience with robot-assisted spine instrumentation.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


Neurosurgery ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 990-995 ◽  
Author(s):  
John K. Houten ◽  
Rani Nasser ◽  
Nrupen Baxi

Abstract BACKGROUND: Increasing popularity of minimally invasive surgery for lumbar fusion has led to dependence upon intraoperative fluoroscopy for pedicle screw placement, because limited muscle dissection does not expose the bony anatomy necessary for traditional, freehand techniques nor for registration steps in image-guidance techniques. This has raised concerns about cumulative radiation exposure for both surgeon and operating room staff. The recent introduction of the O-arm Multidimensional Surgical Imaging System allows for percutaneous placement of pedicle screws, but there is limited clinical experience with the technique and data examining its accuracy. OBJECTIVE: We present the first large clinical series of percutaneous screw placement using navigation of O-arm imaging and compare the results with the fluoroscopy-guided method. METHODS: A retrospective review of a 24-month period identified patients undergoing minimally invasive lumbar interbody fusion. The O-arm was introduced in the middle of this period and was used for all subsequent patients. Accuracy of screw placement was assessed by examination of axial computed tomography or O-arm scans. RESULTS: The fluoroscopy group included 141 screws in 42 patients, and the O-arm group included 205 screws in 52 patients. The perforation rate was 12.8% in the fluoroscopy group and 3% in the O-arm group (P &lt; .001). Single-level O-arm procedures took a mean 200 (153–241) minutes, whereas fluoroscopy took 221 (178–302) minutes (P &lt; .03). CONCLUSION: Percutaneous pedicle screw placement with the O-arm Multidimensional Intraoperative Imaging System is a safe and effective technique and provided improved overall accuracy and reduced operative time compared with conventional fluoroscopic techniques.


2021 ◽  
Author(s):  
Shangju Gao ◽  
Jingchao Wei ◽  
Wenyi Li ◽  
Long Zhang ◽  
Can Cao ◽  
...  

Abstract Background: Robot-assisted pedicle screw placement is usually performed under general anaesthesia to keep the body still. The aim of this study was to compare the accuracy of the robot-assisted technique under regional anaesthesia with conventional fluoroscopy-guided percutaneous pedicle screw placement under general anaesthesia in minimally invasive lumbar fusion surgery.Methods: Patients who underwent robot-assisted percutaneous endoscopic lumbar interbody fusion (PELIF) or fluoroscopy-guided minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) from December 2017 to February 2020 in a single centre were included. Based on the method of percutaneous pedicle screw placement used, patients were divided into the robot-assisted under regional anaesthesia (group RE-RO) and fluoroscopy-guided under general anaesthesia (group GE-FLU) groups. The primary outcome measures were screw accuracy and the incidence of facet joint violation (FJV). Secondary outcome measures included X-ray exposure and intraoperative adverse events.Results: Eighteen patients were included in group RE-RO, and 23 patients were included in group GE-FLU. The percentages of clinically acceptable screws (Gertzbein and Robbins grades A and B) were 94.4% and 91.5%, respectively. There was no significant difference in the percentages of clinically acceptable screws (p=0.44) or overall Gertzbein and Robbins screw accuracy grades (p=0.35). Only the top screws were included in the analysis of FJVs. The percentages of FJV (Babu grades 1, 2 and 3) were 5.6% and 28.3%, respectively. This difference was statistically significant (p=0.01). Overall, the FJV grades in group RE-RO were significantly better than those in group GE-FLU (p=0.009). The mean fluoroscopy time for each screw in group RE-RO was significantly shorter than that in group GE-FLU (group RE-RO, 5.4±1.9 seconds, group GE-FLU, 6.8±2.0 seconds; P=0.03). The intraoperative adverse events included 1 case of registration failure and 1 case of guide-wire dislodgment in group RE-RO as well as 2 cases of screw misplacement in group GE-FLU. No complications related to anaesthesia were observed.Conclusion: Robot-assisted pedicle screw placement under regional anaesthesia can be performed effectively and safely. The accuracy is comparable to the conventional technique. Moreover, this technique has the advantage of fewer FJVs and a lower radiation time.


2019 ◽  
Author(s):  
Li Yongqi ◽  
Zhang Dehua ◽  
Wu Hongzi ◽  
Zhang Ke ◽  
Yang Rui ◽  
...  

Abstract Background This study evaluated the minimal invasiveness, safety, and accuracy of robot-assisted pedicle screw placement procedure using a modified tracer fixation device. Methods Patients were randomly assigned to conventional fixation group (25 patients) and modified fixation group (27 patients). Results No baseline statistical difference was observed between the groups ( P >0.05). The length of unnecessary incision, amount of bleeding, and fixation duration for tracer fixation respectively were 6.08±1.02 mm, 1.46±0.84 ml, and 1.56±0.32 min in the modified fixation group and 40.28±8.52 mm, 12.02±2.24 ml, and 5.08±1.06 min in the conventional group. The difference between both groups was significant ( P <0.05). However, no significant difference between the two groups was observed in terms of the accuracy of pedicle screw placement ( P >0.05). Conclusions The modified minimally invasive procedure for tracer fixation results in minimal trauma and is simple, reliable, and highly safe. Additionally, the procedure does not compromise the accuracy of pedicle screw placement. Thus, it has great clinical applicable value.


Sign in / Sign up

Export Citation Format

Share Document