scholarly journals PMD36 REDUCTION IN PEDICLE SCREW PLACEMENT TIME WITH A NOVEL GUIDEWIRELESS PEDICLE SCREW SYSTEM FOR MINIMALLY INVASIVE SPINE SURGERY: INITIAL FINDINGS

2019 ◽  
Vol 22 ◽  
pp. S223
Author(s):  
P. Grossi ◽  
M. Badin ◽  
M. Erb ◽  
L. Cirilli ◽  
D. Malone ◽  
...  
2021 ◽  
Author(s):  
Ram Kiran Alluri ◽  
Ahilan Sivaganesan ◽  
Avani S. Vaishnav ◽  
Sheeraz A. Qureshi

Minimally invasive spine surgery (MISS) continues to evolve, and the advent of robotic spine technology may play a role in further facilitating MISS techniques, increasing safety, and improving patient outcomes. In this chapter we review early limitations of spinal robotic systems and go over currently available spinal robotic systems. We then summarize the evidence-based advantages of robotic spine surgery, with an emphasis on pedicle screw placement. Additionally, we review some common and expanded clinical applications of robotic spine technology to facilitate MISS. The chapter concludes with a discussion regarding the current limitations and future directions of this relatively novel technology as it applies to MISS.


2013 ◽  
Vol 35 (2) ◽  
pp. E12 ◽  
Author(s):  
Ziev B. Moses ◽  
Rory R. Mayer ◽  
Benjamin A. Strickland ◽  
Ryan M. Kretzer ◽  
Jean-Paul Wolinsky ◽  
...  

Object Parallel advancements in image guidance technology and minimal access techniques continue to push the frontiers of minimally invasive spine surgery (MISS). While traditional intraoperative imaging remains widely used, newer platforms, such as 3D-fluoroscopy, cone-beam CT, and intraoperative CT/MRI, have enabled safer, more accurate instrumentation placement with less radiation exposure to the surgeon. The goal of this work is to provide a review of the current uses of advanced image guidance in MISS. Methods The authors searched PubMed for relevant articles concerning MISS, with particular attention to the use of image-guidance platforms. Pertinent studies published in English were further compiled and characterized into relevant analyses of MISS of the cervical, thoracic, and lumbosacral regions. Results Fifty-two studies were included for review. These describe the use of the iso-C system for 3D navigation during C1–2 transarticular screw placement, the use of endoscopic techniques in the cervical spine, and the role of navigation guidance at the occipital-cervical junction. The authors discuss the evolving literature concerning neuronavigation during pedicle screw placement in the thoracic and lumbar spine in the setting of infection, trauma, and deformity surgery and review the use of image guidance in transsacral approaches. Conclusions Refinements in image-guidance technologies and minimal access techniques have converged on spinal pathology, affording patients the ability to undergo safe, accurate operations without the associated morbidities of conventional approaches. While percutaneous transpedicular screw placement is among the most common procedures to benefit from navigation, other areas of spine surgery can benefit from advances in neuronavigation and further growth in the field of image-guided MISS is anticipated.


2019 ◽  
Vol 14 (4) ◽  
pp. 567-572 ◽  
Author(s):  
Arnold B. Vardiman ◽  
David J. Wallace ◽  
Grant A. Booher ◽  
Neil R. Crawford ◽  
Jessica R. Riggleman ◽  
...  

Abstract Robotic assistance with integrated navigation is an area of high interest for improving the accuracy of minimally invasive pedicle screw placement. This study analyzes the accuracy of pedicle screw placement between an attending spine surgeon and a resident by comparing the left and right sides of the first 101 consecutive cases using navigated robotic assistance in a private practice clinical setting. A retrospective, Institutional Review Board-exempt review of the first 106 navigated robot-assisted spine surgery cases was performed. One attending spine surgeon and one resident performed pedicle screw placement consistently on either the left or right side (researchers were blinded). A CT-based Gertzbein and Robbins system (GRS) was used to classify pedicle screw accuracy, with grade A or B considered accurate. There were 630 consecutive lumbosacral pedicle screws placed. Thirty screws (5 patients) were placed without the robot due to surgeon discretion. Of the 600 pedicle screws inserted by navigated robotic guidance (101 patients), only 1.5% (9/600) were repositioned intraoperatively. Based on the GRS CT-based grading of pedicle breach, 98.67% (296/300) of left-side screws were graded A or B, 1.3% (4/300) were graded C, and 0% (0/300) were graded D. For the right-side screws, 97.67% (293/300) were graded A or B, 1.67% (5/300) were graded C, and 0.66% (2/300) were graded D. This study demonstrated a high level of accuracy (based on GRS) with no significant differences between the left- and right-side pedicle screw placements (98.67% vs. 97.67%, respectively) in the clinical use of navigated, robot-assisted surgery.


2021 ◽  
pp. 155633162110266
Author(s):  
Ram K. Alluri ◽  
Fedan Avrumova ◽  
Ahilan Sivaganesan ◽  
Avani S. Vaishnav ◽  
Darren R. Lebl ◽  
...  

As robotics in spine surgery has progressed over the past 2 decades, studies have shown mixed results on its clinical outcomes and economic impact. In this review, we highlight the evolution of robotic technology over the past 30 years, discussing early limitations and failures. We provide an overview of the history and evolution of currently available spinal robotic platforms and compare and contrast the available features of each. We conclude by summarizing the literature on robotic instrumentation accuracy in pedicle screw placement and clinical outcomes such as complication rates and briefly discuss the future of robotic spine surgery.


Sign in / Sign up

Export Citation Format

Share Document