The rhizosphere microbial community response to a bio-organic fertilizer: finding the mechanisms behind the suppression of watermelon Fusarium wilt disease

2017 ◽  
Vol 40 (1) ◽  
Author(s):  
Jia Zhao ◽  
Yuguo Wang ◽  
Hong Liang ◽  
Jing Huang ◽  
Zhe Chen ◽  
...  
2019 ◽  
Vol 140 ◽  
pp. 49-56 ◽  
Author(s):  
Chao Xue ◽  
Zongzhuan Shen ◽  
Yuewen Hao ◽  
Sitian Yu ◽  
Yuchan Li ◽  
...  

2011 ◽  
Vol 47 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Qingyun Zhao ◽  
Caixia Dong ◽  
Xingming Yang ◽  
Xinlan Mei ◽  
Wei Ran ◽  
...  

2021 ◽  
Author(s):  
Beibei Wang ◽  
Jinming Yang ◽  
Zongzhuan Shen ◽  
Yannan Ou ◽  
Lin Fu ◽  
...  

Abstract. Crop rotation and bio-organic fertilizer application have historically been employed as efficient management strategies for soil-borne disease suppression through soil microbiome manipulation. However, details of how this occurs, and to what extent the combination of methods affects soil microbiota reconstruction from diseased soils lacks investigation. In this study, pineapple-banana rotation combined with biofertilizer application was used to suppress banana Fusarium wilt disease, and effects on both bacterial and fungal communities were investigated using the Miseq Illumine sequencing platform. Our results show that pineapple-banana rotation significantly reduces Fusarium wilt disease incidence, and that the application of bio-organic fertilizer causes additional suppression. Bacterial and fungal communities thrive using rotation in combination with bio-organic fertilizer application: taxonomic and phylogenetic α-diversity in both bacteria and fungi increase along with disease suppression. Between the two strategies, bio-organic fertilizer application affects both bacterial and fungal community composition most predominantly, followed by rotation. Large-scale changes in the fungal community composition and special Burkholderia-related network functions contribute to the observed soil borne-disease suppression. Our results indicate that pineapple-banana rotation combined with bio-organic fertilizer application has strong potential for the sustainable management of banana Fusarium wilt disease.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 385
Author(s):  
Cheng Zhou ◽  
Zhongyou Ma ◽  
Xiaoming Lu ◽  
Lin Zhu ◽  
Jianfei Wang

Soil microbial community changes imposed by the cumulative effects of root-secreted phenolic acids (PAs) promote soil-borne pathogen establishment and invasion under monoculture systems, but the disease-suppressive soil often exhibits less soil-borne pathogens compared with the conducive soil. So far, it remains poorly understood whether soil disease suppressiveness is associated with the alleviated negative effects of PAs, involving microbial degradation. Here, the long-term monoculture particularly shaped the rhizosphere microbial community, for example by the enrichment of beneficial Pseudomonas species in the suppressive soil and thus enhanced disease-suppressive capacity, however this was not observed for the conducive soil. In vitro PA-degradation assays revealed that the antagonistic Pseudomonas species, together with the Xanthomonas and Rhizobium species, significantly increased the efficiency of PA degradation compared to single species, at least partially explaining how the suppressive soil accumulated lower PA levels than the conducive soil. Pot experiments further showed that this consortium harboring the antagonistic Pseudomonas species can not only lower PA accumulation in the 15-year conducive soils, but also confer stronger Fusarium wilt disease suppression compared with a single inoculum with the antagonistic bacteria. Our findings demonstrated that understanding microbial community functions, beyond the single direct antagonism, facilitated the construction of active consortia for preventing soil-borne pathogens under intensive monoculture.


2017 ◽  
Vol 35 (1) ◽  
pp. 027-035
Author(s):  
Alaa Ibrahim ◽  
◽  
Omar Hmmoudi ◽  
George Asmar ◽  
Naser Sheikh Suleiman ◽  
...  

Author(s):  
Ahmed M. Aldinary ◽  
Amer Morsy Abdelaziz ◽  
Ayman A. Farrag ◽  
Mohamed S. Attia

Author(s):  
Kexin Ma ◽  
Jinming Kou ◽  
Muhammad Khashi U Rahman ◽  
Wenting Du ◽  
Xingyu Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document