rhizosphere microbial community
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 65)

H-INDEX

24
(FIVE YEARS 7)

2022 ◽  
Vol 172 ◽  
pp. 104339
Author(s):  
Eliane Cristina Gruszka Vendruscolo ◽  
Dany Mesa ◽  
Emanuel Maltempi de Souza

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Haizhen Ma ◽  
Panpan Li ◽  
Xingwang Liu ◽  
Can Li ◽  
Shengkui Zhang ◽  
...  

Abstract Background Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. Results In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT–PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. Conclusions Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.


2021 ◽  
Author(s):  
Yuehan Li ◽  
Zheng Qu ◽  
Weihui Xu ◽  
Wenjing Chen ◽  
Yunlong Hu ◽  
...  

Abstract Plant-microbe interactions affect ecosystem function, and plant species influence relevant microorganisms. However, the different genotypes of maize that shape the structure and function of the rhizosphere microbial community remain poorly investigated. During this study, the structures of the rhizosphere microbial community among three genotypes of maize were analyzed at the seedling and maturity stages using high-throughput sequencing and bioinformatics analysis. The results demonstrated that Tiannuozao 60 (N) showed higher bacterial and fungal diversity in both periods, while Junlong1217 (QZ) and Fujitai519 (ZL) had lower diversity. The bacterial community structure among the three varieties was significantly different; however, fewer differences were found in the fungal community. The bacterial community composition of N and QZ was similar yet different from ZL at the seedling stage. The bacterial networks of the three cultivars were more complex than the fungal networks, and the networks of the mature stages were more complex than those of the seedling stages, while the opposite was true for the fungi. FAPROTAX functional and FUNGuild functional predictions revealed that different varieties of maize were different in functional abundance at the genus level, and these differences were related to breeding characteristics. This study suggested that different maize genotypes regulated the rhizosphere bacterial and fungal communities, which would help guide practices.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qiaomei Wang ◽  
Ruijuan Yang ◽  
Wenshu Peng ◽  
Yanmei Yang ◽  
Xiaoling Ma ◽  
...  

Tea gray blight disease and its existing control measures have had a negative impact on the sustainable development of tea gardens. However, our knowledge of safe and effective biological control measures is limited. It is critical to explore beneficial microbial communities in the tea rhizosphere for the control of tea gray blight. In this study, we prepared conditioned soil by inoculating Pseudopestalotiopsis camelliae-sinensis on tea seedling leaves. Thereafter, we examined the growth performance and disease resistance of fresh tea seedlings grown in conditioned and control soils. Next, the rhizosphere microbial community and root exudates of tea seedlings infected by the pathogen were analyzed. In addition, we also evaluated the effects of the rhizosphere microbial community and root exudates induced by pathogens on the performance of tea seedlings. The results showed that tea seedlings grown in conditioned soil had lower disease index values and higher growth vigor. Soil microbiome analysis revealed that the fungal and bacterial communities of the rhizosphere were altered upon infection with Ps. camelliae-sinensis. Genus-level analysis showed that the abundance of the fungi Trichoderma, Penicillium, and Gliocladiopsis and the bacteria Pseudomonas, Streptomyces, Bacillus, and Burkholderia were significantly (p < 0.05) increased in the conditioned soil. Through isolation, culture, and inoculation tests, we found that most isolates from the induced microbial genera could inhibit the infection of tea gray blight pathogen and promote tea seedling growth. The results of root exudate analysis showed that infected tea seedlings exhibited significantly higher exudate levels of phenolic acids and flavonoids and lower exudate levels of amino acids and organic acids. Exogenously applied phenolic acids and flavonoids suppressed gray blight disease by regulating the rhizosphere microbial community. In summary, our findings suggest that tea plants with gray blight can recruit beneficial rhizosphere microorganisms by altering their root exudates, thereby improving the disease resistance of tea plants growing in the same soil.


2021 ◽  
Author(s):  
Xiaoli Chang ◽  
Huiting Xu ◽  
Li Yan ◽  
Dan Zhu ◽  
Wei Wang ◽  
...  

Abstract BackgroundThe dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize-soybean intercropping can suppress soybean root rot as compared to monoculture. However, it is still unknown whether rhizosphere microbial community participates in the regulation of intercropped soybean root rot.MethodsIn this study, the difference of rhizosphere Fusarium and Trichoderma community was compared between healthy or root-rotted soybean rhizosphere soil from soybean monoculture and maize-soybean intercropping, and the inhibitory effect of potential biocontrol Trichoderma against pathogenic Fusarium were examined.ResultsThe abundance of rhizosphere Fusarium was remarkably different between intercropping and monoculture, while Trichoderma was largely accumulated in healthy rhizosphere soil of intercropping rather than monoculture. Four rhizosphere Fusarium species identified were all pathogenic to soybean but displayed distinct composition and isolation proportion in the corresponding soil types. As the dominant and most aggressive species, F. oxysporum was more frequently isolated in diseased soil of monoculture. Furthermore, of three Trichoderma species identified, T. harzianum dramatically increased in the rhizosphere of intercropping rather than monoculture as compared to T. virens and T. afroharzianum. For in-vitro antagonism test, Trichoderma strains had antagonistic effects on F. oxysporum with the percentage of mycelial inhibition ranging of 50.59%-92.94%, and they displayed good mycoparasitic abilities against F. oxysporum through coiling around and entering into the hyphae, expanding along cell-cell lumen and even dissolving cell walls of target fungus.ConclusionThese results indicate maize-soybean intercropping significantly increase the density and composition proportion of beneficial Trichoderma to antagonist the pathogenic Fusarium species, thus contributing to the suppression of soybean root rot under intercropping.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2183
Author(s):  
Charitini Nikolaidou ◽  
Nikolaos Monokrousos ◽  
Pantelitsa D. Kapagianni ◽  
Michael Orfanoudakis ◽  
Triantafyllia Dermitzoglou ◽  
...  

Inoculation with beneficial microbes represents a promising solution for sustainable agricultural production; however, knowledge on the effects of inoculants on the indigenous microbial communities remains limited. Here, we evaluated the impact of the arbuscular mycorrhizal fungus Rhizophagus irregularis and the promoting rhizobacterium Bacillus subtilis on the growth of Lactuca sativa. The biomass, the composition, and the enzyme activity (urease, acid phosphatase, and β-glycosidase) of the rhizosphere microbial community at two soil moisture levels (5 and 10% soil water content) were evaluated. Fungal colonization was lower in co-inoculated plants than those only inoculated with R. irregularis. Plant growth was enhanced in co-inoculated and B. subtilis inoculated soils. Bacterial biomass and the composition of the microbial communities responded to the joint effect of inoculant type × water regime while the biomass of the other microbial groups (fungi, actinomycetes, microeukaryotes) was only affected by inoculant type. Co-inoculation enhanced the activity of acid phosphatase, indicating a synergistic effect of the two inoculants. Co-inoculation positively impacted the index reflecting plant–microbial soil functions under both water regimes. We concluded that the interactions between the two inocula as well as between them and the resident rhizosphere microbial community were mainly negative. However, the negative interactions between R. irregularis and B. subtilis were not reflected in plant biomass. The knowledge of the plant and rhizosphere microbial responses to single and co-inoculation and their dependency on abiotic conditions is valuable for the construction of synthetic microbial communities that could be used as efficient inocula.


Sign in / Sign up

Export Citation Format

Share Document