scholarly journals Lung ultrasound presentation of COVID-19 patients: phenotypes and correlations

Author(s):  
Gianmarco Secco ◽  
◽  
Marzia Delorenzo ◽  
Francesco Salinaro ◽  
Caterina Zattera ◽  
...  

AbstractBedside lung ultrasound (LUS) can play a role in the setting of the SarsCoV2 pneumonia pandemic. To evaluate the clinical and LUS features of COVID-19 in the ED and their potential prognostic role, a cohort of laboratory-confirmed COVID-19 patients underwent LUS upon admission in the ED. LUS score was derived from 12 fields. A prevalent LUS pattern was assigned depending on the presence of interstitial syndrome only (Interstitial Pattern), or evidence of subpleural consolidations in at least two fields (Consolidation Pattern). The endpoint was 30-day mortality. The relationship between hemogasanalysis parameters and LUS score was also evaluated. Out of 312 patients, only 36 (11.5%) did not present lung involvment, as defined by LUS score < 1. The majority of patients were admitted either in a general ward (53.8%) or in intensive care unit (9.6%), whereas 106 patients (33.9%) were discharged from the ED. In-hospital mortality was 25.3%, and 30-day survival was 67.6%. A LUS score > 13 had a 77.2% sensitivity and a 71.5% specificity (AUC 0.814; p < 0.001) in predicting mortality. LUS alterations were more frequent (64%) in the posterior lower fields. LUS score was related with P/F (R2 0.68; p < 0.0001) and P/F at FiO2 = 21% (R2 0.59; p < 0.0001). The correlation between LUS score and P/F was not influenced by the prevalent ultrasound pattern. LUS represents an effective tool in both defining diagnosis and stratifying prognosis of COVID-19 pneumonia. The correlation between LUS and hemogasanalysis parameters underscores its role in evaluating lung structure and function.

2019 ◽  
Vol 86 (5) ◽  
pp. 783-790 ◽  
Author(s):  
Christopher P. Michetti ◽  
Samir M. Fakhry ◽  
Karen Brasel ◽  
Niels D. Martin ◽  
Erik J. Teicher ◽  
...  

2021 ◽  
Author(s):  
Soledad E. González ◽  
Lorena Regairaz ◽  
Martín R. Salazar ◽  
Noelia S. Ferrando ◽  
Verónica V. González Martínez ◽  
...  

SummaryConvalescent plasma administration (CPA) is widely used to treat Covid-19, but its effectiveness remains controversial. Here we report the results of an Expanded Access Program of CPA in the province of Buenos Aires, Argentina. We evaluated the relationship between the timing of CPA and 28-day mortality in 4719 hospitalized patients with COVID-19 pneumonia. Early (≤3 days from admission) CPA was associated to decreased mortality in patients in the general ward and in the Intensive Care Unit not requiring mechanical ventilation. This suggests that the favorable effect of CPA might be related both to disease acuity and to the therapeutic window.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stephanie-Susanne Stecher ◽  
Sofia Anton ◽  
Alessia Fraccaroli ◽  
Jeremias Götschke ◽  
Hans Joachim Stemmler ◽  
...  

Abstract Background Point-of-care lung ultrasound (LU) is an established tool in the first assessment of patients with coronavirus disease (COVID-19). Purpose of this study was to evaluate the value of lung ultrasound in COVID-19 intensive care unit (ICU) patients in predicting clinical course and outcome. Methods We analyzed lung ultrasound score (LUS) of all COVID-19 patients admitted from March 2020 to December 2020 to the Internal Intensive Care Unit, Ludwig-Maximilians-University (LMU) of Munich. LU was performed according to a standardized protocol at ICU admission and in case of clinical deterioration with the need for intubation. A normal lung scores 0 points, the worst LUS has 24 points. Patients were stratified in a low (0–12 points) and a high (13–24 points) lung ultrasound score group. Results The study included 42 patients, 69% of them male. The most common comorbidities were hypertension (81%) and obesity (57%). The values of pH (7.42 ± 0.09 vs 7.35 ± 0.1; p = 0.047) and paO2 (107 [80–130] vs 80 [66–93] mmHg; p = 0.034) were significantly reduced in patients of the high LUS group. Furthermore, the duration of ventilation (12.5 [8.3–25] vs 36.5 [9.8–70] days; p = 0.029) was significantly prolonged in this group. Patchy subpleural thickening (n = 38; 90.5%) and subpleural consolidations (n = 23; 54.8%) were present in most patients. Pleural effusion was rare (n = 4; 9.5%). The median total LUS was 11.9 ± 3.9 points. In case of clinical deterioration with the need for intubation, LUS worsened significantly compared to baseline LU. Twelve patients died during the ICU stay (29%). There was no difference in survival in both LUS groups (75% vs 66.7%, p = 0.559). Conclusions LU can be a useful monitoring tool to predict clinical course but not outcome of COVID-19 ICU patients and can early recognize possible deteriorations.


2014 ◽  
Vol 40 (10) ◽  
pp. 1592-1594 ◽  
Author(s):  
Dimitris Georgopoulos ◽  
Nectaria Xirouchaki ◽  
Giovanni Volpicelli

Author(s):  
Margit V. Szabari ◽  
Jozsef Tolnai ◽  
Balazs Maar ◽  
Harikrishnan Parameswaran ◽  
Elizabeth Bartolak-Suki ◽  
...  

2016 ◽  
Vol 310 (9) ◽  
pp. L837-L845 ◽  
Author(s):  
Suchita Singh ◽  
Manish Bodas ◽  
Naveen K. Bhatraju ◽  
Bijay Pattnaik ◽  
Atish Gheware ◽  
...  

There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly ( P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype.


2018 ◽  
Vol 66 ◽  
pp. S260
Author(s):  
A.R. Carter ◽  
D.L. Santos Ferreira ◽  
A. Taylor ◽  
N. Chaturvedi ◽  
A.D. Hughes ◽  
...  

Author(s):  
Lorenza González-Mariscal ◽  
Antonia Avila ◽  
Abigail Betanzos

Sign in / Sign up

Export Citation Format

Share Document