scholarly journals Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: an integrated computational study

Biologia ◽  
2022 ◽  
Author(s):  
Sourav Das ◽  
Anirudh Singh ◽  
Sintu Kumar Samanta ◽  
Atanu Singha Roy
Author(s):  
Janmejaya Rout ◽  
Bikash Chandra Swain ◽  
Umakanta Tripathy

<p>The severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a novel infectious disease that is in rapid growth. Several trials are going on worldwide to find a solution for this pandemic. The viral replication can be blocked by inhibiting the SARS-CoV-2 spike protein (SARS-CoV-2 Spro), and the SARS-CoV-2 main protease (SARS-CoV-2 Mpro). The binding of potential small molecules to these proteins can possibly inhibit the replication and transcription of the virus. The spice molecules that are used in our food have the properties of antiviral, antifungal, and antimicrobial nature. As spice molecules are consumed in the diet, hence its antiviral properties against SARS-CoV-2 will benefit in a significant manner. Therefore, in this work, the blind molecular docking of 30 selected spice molecules (through ADME property screening) was performed for the identification of potential inhibitors for the Spro and Mpro of SARS-CoV-2. We found that all the molecules bind actively with the SARS-CoV-2 Spro and Mpro. However, the molecule, Piperine, is found to have the highest binding affinity among the 30 screened molecules. We anticipate immediate wet-lab experiments and clinical trials in support of this computational study might be helpful in inhibiting the SARS-CoV-2 virus.</p>


Author(s):  
Janmejaya Rout ◽  
Bikash Chandra Swain ◽  
Umakanta Tripathy

<p>The severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a novel infectious disease that is in rapid growth. Several trials are going on worldwide to find a solution for this pandemic. The viral replication can be blocked by inhibiting the SARS-CoV-2 spike protein (SARS-CoV-2 Spro), and the SARS-CoV-2 main protease (SARS-CoV-2 Mpro). The binding of potential small molecules to these proteins can possibly inhibit the replication and transcription of the virus. The spice molecules that are used in our food have the properties of antiviral, antifungal, and antimicrobial nature. As spice molecules are consumed in the diet, hence its antiviral properties against SARS-CoV-2 will benefit in a significant manner. Therefore, in this work, the blind molecular docking of 30 selected spice molecules (through ADME property screening) was performed for the identification of potential inhibitors for the Spro and Mpro of SARS-CoV-2. We found that all the molecules bind actively with the SARS-CoV-2 Spro and Mpro. However, the molecule, Piperine, is found to have the highest binding affinity among the 30 screened molecules. We anticipate immediate wet-lab experiments and clinical trials in support of this computational study might be helpful in inhibiting the SARS-CoV-2 virus.</p>


2020 ◽  
Author(s):  
Sona Lyndem ◽  
Sharat Sarmah ◽  
Sourav Das ◽  
Atanu Singha Roy

<p>The dissemination of a novel corona virus, SARS-CoV-2, through rapid human to human transmission has led to a global health emergency. The lack of a vaccine or medication for effective treatment of this disease has made it imperative for developing novel drug discovery approaches. Repurposing of drugs is one such method currently being used to tackle the viral infection. The genome of SARS-CoV-2 replicates due to the functioning of a main protease called M<sup>pro</sup>. By targeting the active site of M<sup>pro</sup> with potential inhibitors, this could prevent viral replication from taking place. Blind docking technique was used to investigate the interactions between 29 naturally occurring coumarin compounds and SARS-CoV-2 main protease, M<sup>pro</sup>, out of which 17 coumarin compounds were seen to bind to the active site through the interaction with the catalytic dyad, His41 and Cys145, along with other neighbouring residues. On comparing the ΔG values of the coumarins bound to the active site of M<sup>pro</sup>, corymbocoumarin belonging to the class pyranocoumarins, methylgalbanate belonging to the class simple coumarins and heraclenol belonging to the class furanocoumarins, displayed best binding efficiency and could be considered as potential M<sup>pro</sup> protease inhibitors. Preliminary screening of these naturally occurring coumarin compounds as potential SARS-CoV-2 replication inhibitors acts as a stepping stone for further <i>in vitro</i> and <i>in vivo</i> experimental investigation and analytical validation. </p>


Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Ibrahim Ahmad Muhammad ◽  
Kanikar Muangchoo ◽  
Auwal Muhammad ◽  
Ya’u Sabo Ajingi ◽  
Ibrahim Yahaya Muhammad ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was found to be a severe threat to global public health in late 2019. Nevertheless, no approved medicines have been found to inhibit the virus effectively. Anti-malarial and antiviral medicines have been reported to target the SARS-CoV-2 virus. This paper chose eight natural eucalyptus compounds to study their binding interactions with the SARS-CoV-2 main protease (Mpro) to assess their potential for becoming herbal drugs for the new SARS-CoV-2 infection virus. In-silico methods such as molecular docking, molecular dynamics (MD) simulations, and Molecular Mechanics Poisson Boltzmann Surface Area (MM/PBSA) analysis were used to examine interactions at the atomistic level. The results of molecular docking indicate that Mpro has good binding energy for all compounds studied. Three docked compounds, α-gurjunene, aromadendrene, and allo-aromadendrene, with highest binding energies of −7.34 kcal/mol (−30.75 kJ/mol), −7.23 kcal/mol (−30.25 kJ/mol), and −7.17 kcal/mol (−29.99 kJ/mol) respectively, were simulated with GROningen MAchine for Chemical Simulations (GROMACS) to measure the molecular interactions between Mpro and inhibitors in detail. Our MD simulation results show that α-gurjunene has the strongest binding energy of −20.37 kcal/mol (−85.21 kJ/mol), followed by aromadendrene with −18.99 kcal/mol (−79.45 kJ/mol), and finally allo-aromadendrene with −17.91 kcal/mol (−74.95 kJ/mol). The findings indicate that eucalyptus may be used to inhibit the Mpro enzyme as a drug candidate. This is the first computational analysis that gives an insight into the potential role of structural flexibility during interactions with eucalyptus compounds. It also sheds light on the structural design of new herbal medicinal products against Mpro.


2020 ◽  
Author(s):  
Sona Lyndem ◽  
Sharat Sarmah ◽  
Sourav Das ◽  
Atanu Singha Roy

<p>The dissemination of a novel corona virus, SARS-CoV-2, through rapid human to human transmission has led to a global health emergency. The lack of a vaccine or medication for effective treatment of this disease has made it imperative for developing novel drug discovery approaches. Repurposing of drugs is one such method currently being used to tackle the viral infection. The genome of SARS-CoV-2 replicates due to the functioning of a main protease called M<sup>pro</sup>. By targeting the active site of M<sup>pro</sup> with potential inhibitors, this could prevent viral replication from taking place. Blind docking technique was used to investigate the interactions between 29 naturally occurring coumarin compounds and SARS-CoV-2 main protease, M<sup>pro</sup>, out of which 17 coumarin compounds were seen to bind to the active site through the interaction with the catalytic dyad, His41 and Cys145, along with other neighbouring residues. On comparing the ΔG values of the coumarins bound to the active site of M<sup>pro</sup>, corymbocoumarin belonging to the class pyranocoumarins, methylgalbanate belonging to the class simple coumarins and heraclenol belonging to the class furanocoumarins, displayed best binding efficiency and could be considered as potential M<sup>pro</sup> protease inhibitors. Preliminary screening of these naturally occurring coumarin compounds as potential SARS-CoV-2 replication inhibitors acts as a stepping stone for further <i>in vitro</i> and <i>in vivo</i> experimental investigation and analytical validation. </p>


Virology ◽  
2021 ◽  
Vol 554 ◽  
pp. 48-54
Author(s):  
Rana H. Refaey ◽  
Mohamed K. El-Ashrey ◽  
Yassin M. Nissan

Author(s):  
Azza H. Harisna ◽  
Rizky Nurdiansyah ◽  
Putri H. Syaifie ◽  
Dwi W. Nugroho ◽  
Kurniawan E. Saputro ◽  
...  

2021 ◽  
Author(s):  
Nemanja Djokovic ◽  
Dusan Ruzic ◽  
Teodora Djikic ◽  
Sandra Cvijic ◽  
Jelisaveta Ignjatovic ◽  
...  

2021 ◽  
Vol 6 (14) ◽  
pp. 3468-3486
Author(s):  
Mohamed Reda Aouad ◽  
Daoud J. O. Khan ◽  
Musa A. Said ◽  
Nadia S. Al‐Kaff ◽  
Nadjet Rezki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document