Simulation logging experiment and interpretation model of array production logging measurements in a horizontal well

2021 ◽  
Vol 18 (2) ◽  
pp. 171-184
Author(s):  
Hong-Wei Song ◽  
Hai-Min Guo ◽  
Xin-Lei Shi ◽  
Hang-Yu Shi
Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Peng Chen ◽  
Changpeng Hu ◽  
Pingguo Zou ◽  
Lili Lin ◽  
Song Lu ◽  
...  

Abstract Stimulated reservoir volume is an effective stimulation measure and creates a complex fracture network, but the description and characterization of fracture network are very difficult. Well test analysis is a common method to describe the fracture network, and it is the key to build a proper interpretation model. However, most published works only consider the shape of the fractured area or the stress sensitivity effect, and few works take both factors into account. In this paper, based on reservoir properties and flow law after a stimulated reservoir volume, an interpretation model is established with an arbitrary shape of the fractured area and stress sensitivity effect of different flow areas. The model is solved to conduct the pressure response using Laplace transform, point source function, and boundary element theory. The influence of fractures’ parameters and stress sensitivity effect is analyzed on the pressure behavior. Results from this study show that the special flow regimes for a horizontal well with a stimulated reservoir volume are (1) bilinear flow dominated by hydraulic fractures, (2) linear flow dominated by formation around the hydraulic fractures, (3) crossflow from a matrix system to the fractured area, and (4) radial flow control by properties of the fractured area. Parameters of hydraulic fractures mainly affect the early stage of pressure behavior. On the contrary, the stress-sensitive effect mainly affects the middle and late stages; the stronger the stress sensitivity effect is, the more obvious the effect is. The findings of this study can help for better understanding of the fracture network in a tight oil reservoir with a stimulated reservoir volume.


Author(s):  
B.N. Starovoytova ◽  
◽  
S.V. Golovin ◽  
E.A. Kavunnikova ◽  
E.V. Shel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document