scholarly journals An Interpretation Model for the Production Profile on the Same Angle of a Horizontal Well Trajectory

2020 ◽  
Vol 8 ◽  
Author(s):  
Wenguang Song ◽  
Na Jia ◽  
Qiongqin Jiang
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Shaohu Liu ◽  
Zhichao Zhu

Based on current issues of difficulties in controlling horizontal well trajectory and high cost in drilling deflecting, a compound deflecting BHA (bottom hole assembly) with diameter-adjustable stabilizer (DAS) and bending-adjustable housing (BAH) is presented. According to the DAS operational principles and the stress condition in operation, the computational formula of wedge’s axial moving displacement and piston’s radial telescopic displacement of the DAS driven by drilling fluid pressure is presented. This formula is verified by lab experimental simulation. Three-points-circle method is utilized to calculate geometrical build up rate of compound deflecting BHA, and the result is verified by field data. The method is utilized to make design and calculate for compound BHA. The research can be used as a reference for compound deflecting drilling in horizontal wells. The flow rate and pressure difference have a very serious impact on the flow regulator erosion, so the flow rate and pressure difference should be controlled when the DAS works, and it is suggested that the flow regulator should maintain and replace frequently when in service.


2021 ◽  
Vol 18 (2) ◽  
pp. 171-184
Author(s):  
Hong-Wei Song ◽  
Hai-Min Guo ◽  
Xin-Lei Shi ◽  
Hang-Yu Shi

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Peng Chen ◽  
Changpeng Hu ◽  
Pingguo Zou ◽  
Lili Lin ◽  
Song Lu ◽  
...  

Abstract Stimulated reservoir volume is an effective stimulation measure and creates a complex fracture network, but the description and characterization of fracture network are very difficult. Well test analysis is a common method to describe the fracture network, and it is the key to build a proper interpretation model. However, most published works only consider the shape of the fractured area or the stress sensitivity effect, and few works take both factors into account. In this paper, based on reservoir properties and flow law after a stimulated reservoir volume, an interpretation model is established with an arbitrary shape of the fractured area and stress sensitivity effect of different flow areas. The model is solved to conduct the pressure response using Laplace transform, point source function, and boundary element theory. The influence of fractures’ parameters and stress sensitivity effect is analyzed on the pressure behavior. Results from this study show that the special flow regimes for a horizontal well with a stimulated reservoir volume are (1) bilinear flow dominated by hydraulic fractures, (2) linear flow dominated by formation around the hydraulic fractures, (3) crossflow from a matrix system to the fractured area, and (4) radial flow control by properties of the fractured area. Parameters of hydraulic fractures mainly affect the early stage of pressure behavior. On the contrary, the stress-sensitive effect mainly affects the middle and late stages; the stronger the stress sensitivity effect is, the more obvious the effect is. The findings of this study can help for better understanding of the fracture network in a tight oil reservoir with a stimulated reservoir volume.


2006 ◽  
Author(s):  
Andrew J. Bond ◽  
Ding Zhu ◽  
Rungtip Kamkom ◽  
Alfred Daniel Hill

Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 390-407 ◽  
Author(s):  
Bikash K. Sinha ◽  
Michael R. Kane ◽  
Bernard Frignet

Analyses of sonic logs in a horizontal well provide new information about mechanical properties of rocks, made possible by recent developments in our understanding of acoustic wave propagation in prestressed formations. Most sections of this horizontal well exhibit azimuthal shear isotropy, indicating isotropic stresses in the plane perpendicular to the well trajectory, leading to stable wellbore conditions. However, two sections show dipole dispersion crossovers that confirm the presence of stress‐induced shear anisotropy caused by a difference between the maximum and minimum stresses in the plane perpendicular to the well trajectory. The two dipole dispersions are obtained by processing the recorded waveforms by a modified matrix pencil algorithm. The fast‐shear direction is estimated from Alford rotation of the cross‐dipole waveforms. One section of the well exhibits the fast‐shear direction parallel to the overburden stress as the maximum stress direction, whereas the other section has the fast‐shear direction parallel to the horizontal stress that is larger than the overburden stress. The cause of this change in the fast‐shear direction is believed to be the well’s penetration into a 3-ft-thick bed with lower porosity and permeability and significantly higher elastic stiffnesses than those in the other part of the homogeneous, high‐permeability reservoir. A stiff bed is likely to have greater stresses in its plane than perpendicular to it, which would make the horizontal stresses greater than the vertical.


2007 ◽  
Vol 10 (01) ◽  
pp. 66-76 ◽  
Author(s):  
Nasser Saqer Al-Mohannadi ◽  
Erdal Ozkan ◽  
Hossein Kazemi

Summary This paper presents a discussion of the pressure-transient responses of horizontal wells in anticlinal structures and curved and undulating wells in slab reservoirs. It confirms that, in the absence of a gas cap, conventional horizontal-well models may be used to approximate the flow characteristics of the systems in which the trajectory of the well does not conform to the curvature of the producing structure. If a gas cap is present, however, the unconformity of the well trajectory and producing layer manifests itself, especially on derivative characteristics when the gas saturation increases around the well. In general, the most significant deviations from the conventional horizontal-well behavior are observed during the buildup periods following long drawdowns. In these cases, the pressure-transient analysis is complicated and requires detailed numerical modeling of the well trajectory and reservoir geometry in the vertical plane. Introduction Conventional horizontal-well pressure-transient models assume that the top and bottom boundaries of the reservoir are horizontal planes; that is, the producing stratum is a slab, and the well is straight and parallel to the slab boundaries. Wells, however, may be drilled horizontally in anticlines and domes, or they may be curved or undulating in a horizontal slab reservoir. In the literature, several reservoir shapes have been considered in the context of horizontal wells: infinite slab (Clonts and Ramey 1986; Ozkan et al. 1989; Goode and Thambynayagam 1987; Rosa and Carvalho 1989; Kuchuk et al. 1990, 1991; Ozkan and Raghavan 1990a), cylinder (Ozkan and Raghavan 1991a, 1991b), rectangular parallelepiped (Ozkan and Raghavan 1991a, 1991b; Daviau et al. 1988; Odeh and Babu 1990), and vertical no-flow boundary at an arbitrary orientation (Azar-Nejad et al. 1996a). The common feature of these reservoir models is the assumption that the top and bottom boundaries are horizontal planes. Despite the fact that the conditions at the top and bottom boundaries strongly influence the pressure-transient characteristics of horizontal wells (Clonts and Ramey 1986; Ozkan et al. 1989; Goode and Thambynayagam 1987; Ozkan 2001), the effect of the curvature of these boundaries, as in the case of anticlines and domes, has not been discussed in the literature. Similar to the curvature of the top and bottom boundaries, the curvature or undulations of horizontally oriented wells (referred to as horizontal wells in this paper) have not attracted much attention in the pressure-transient-analysis literature. Two studies have addressed this issue specifically. Azar-Nejad et al. (1996b) considered a curved well that was a quarter of a circle (from vertical to horizontal) in a slab reservoir. They showed that especially in anisotropic reservoirs, the pressure-transient response of the curved well could not be approximated by that of a straight horizontal well of equal drilled length. This study did not address the issue of effective well length and the effect of the aspect ratio (the ratio of the distance from the well to the closest boundary and thickness of the formation). Goktas and Ertekin (2003) discussed another common problem for horizontal wells—undulations. Their study indicated that when the vertical window of undulations becomes comparable to the formation thickness, undulations might influence the characteristics of pressure-transient responses. For practical windows of undulations that commonly result from standard drilling practices, however, the pressure-transient responses could be closely approximated by that of a straight horizontal well. This conclusion was different from that of Azar-Nejad et al. (1996b). It also must be noted that Goktas and Ertekin (2003) used the straight distance between the tips of the undulating well in the comparisons with straight horizontal wells, as opposed to the total drilled length used by Azar-Nejad et al. (1996b).


Sign in / Sign up

Export Citation Format

Share Document