scholarly journals Pressure Response of a Horizontal Well in Tight Oil Reservoirs with Stimulated Reservoir Volume

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Peng Chen ◽  
Changpeng Hu ◽  
Pingguo Zou ◽  
Lili Lin ◽  
Song Lu ◽  
...  

Abstract Stimulated reservoir volume is an effective stimulation measure and creates a complex fracture network, but the description and characterization of fracture network are very difficult. Well test analysis is a common method to describe the fracture network, and it is the key to build a proper interpretation model. However, most published works only consider the shape of the fractured area or the stress sensitivity effect, and few works take both factors into account. In this paper, based on reservoir properties and flow law after a stimulated reservoir volume, an interpretation model is established with an arbitrary shape of the fractured area and stress sensitivity effect of different flow areas. The model is solved to conduct the pressure response using Laplace transform, point source function, and boundary element theory. The influence of fractures’ parameters and stress sensitivity effect is analyzed on the pressure behavior. Results from this study show that the special flow regimes for a horizontal well with a stimulated reservoir volume are (1) bilinear flow dominated by hydraulic fractures, (2) linear flow dominated by formation around the hydraulic fractures, (3) crossflow from a matrix system to the fractured area, and (4) radial flow control by properties of the fractured area. Parameters of hydraulic fractures mainly affect the early stage of pressure behavior. On the contrary, the stress-sensitive effect mainly affects the middle and late stages; the stronger the stress sensitivity effect is, the more obvious the effect is. The findings of this study can help for better understanding of the fracture network in a tight oil reservoir with a stimulated reservoir volume.

2015 ◽  
Vol 8 (1) ◽  
pp. 235-247 ◽  
Author(s):  
Ya Deng ◽  
Rui Guo ◽  
Zhongyuan Tian ◽  
Cong Xiao ◽  
Haiying Han ◽  
...  

Multi-stage fracturing horizontal well currently has been proved to be the most effective method to produce shale gas. This method can activate the natural fractures system defined as stimulated reservoir volume (SRV), the remaining region similarly is defined as un-stimulated reservoir volume (USRV). At present, no type curves have been developed for hydraulic fractured shale gas reservoirs in which the SRV zone has triple-porosity dual-depletion flow behavior and the USRV zone has double porosity flow behavior. In this paper, the SRV zone and USRV zone respectively are simplified as cubic triple-porosity and slab dual porosity media. We have established a new productivity model for multifractured horizontal well shale gas with Comprehensive consideration of desorption, diffusion, viscous flow, stress sensitivity and dual-depletion mechanism in matrix. The rate transient responses are inverted into real time space with stehfest numerical inversion algorithm. Type curves are plotted, and different flow regimes in shale gas reservoirs are identified. Effects of relevant parameters are analyzed as well. The whole flow period can be divided into 8 regimes: bilinear flow in SRV; pseudo elliptic flow; dual inter-porosity flow; transitional flow; linear flow in USRV; inter-porosity flow and boundary-dominated flow. The stress sensitivity basically has negative influence on the whole productivity period .The less the value of Langmuir volume and the lager the value of Langmuir pressure, the more lately the inter-porosity flow and boundary-dominated flow occurs. It in concluded that the USRV zone has positive influence on production and could not be ignored.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ruizhong Jiang ◽  
Jianchun Xu ◽  
Zhaobo Sun ◽  
Chaohua Guo ◽  
Yulong Zhao

A mathematical model of multistage fractured horizontal well (MsFHW) considering stimulated reservoir volume (SRV) was presented for tight oil reservoirs. Both inner and outer regions were assumed as single porosity media but had different formation parameters. Laplace transformation method, point source function integration method, superposition principle, Stehfest numerical algorithm, and Duhamel’s theorem were used comprehensively to obtain the semianalytical solution. Different flow regimes were divided based on pressure transient analysis (PTA) curves. According to rate transient analysis (RTA), the effects of related parameters such as SRV radius, storativity ratio, mobility ratio, fracture number, fracture half-length, and fracture spacing were analyzed. The presented model and obtained results in this paper enrich the performance analysis models of MsFHW considering SRV.


SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 573-586 ◽  
Author(s):  
Bo Wang ◽  
Fujian Zhou ◽  
Chen Yang ◽  
Daobing Wang ◽  
Kai Yang ◽  
...  

Summary Temporary plugging and diverting fracturing (TPDF) has become one of the fastest-growing techniques to maximize the stimulated reservoir volume (SRV). During the field operation of TPDF, diverters are injected to redirect the hydraulic fractures into the under-stimulated region of the reservoir, and, thus, to obtain better coverage of the created fracture network. In this study, the commonly used true tri-axial hydraulic fracturing system is modified to investigate the influences of various factors on the injection pressure response and resultant fracture geometry during diversion treatments. The experimental results show the feasibility of creating multiple fractures through TPDF, and more importantly give the following findings: (1) a complex diverted fracture network tends to be created at a small differential stress (2.5 MPa in this case), while diverted fractures tend to grow parallel to the initial fractures at a high differential stress (7.5 MPa in this case); (2) with the same concentration in the fracturing fluid, 40-mesh powder-shaped diverters can plug the created fractures and increase the net pressure more rapidly than 6-mm fiber-shaped diverters; (3) an excess of diverters can lead to a strong injection pressure response, and, thus, enhance the difficulty of creating multiple fractures; (4) when diverters are injected with the fracturing fluid, no obvious breakdown pressure or propagation pressure is shown during the fracture propagation.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2724 ◽  
Author(s):  
Long Ren ◽  
Wendong Wang ◽  
Yuliang Su ◽  
Mingqiang Chen ◽  
Cheng Jing ◽  
...  

There are multiporosity media in tight oil reservoirs after stimulated reservoir volume (SRV) fracturing. Moreover, multiscale flowing states exist throughout the development process. The fluid flowing characteristic is different from that of conventional reservoirs. In terms of those attributes of tight oil reservoirs, considering the flowing feature of the dual-porosity property and the fracture network system based on the discrete-fracture model (DFM), a mathematical flow model of an SRV-fractured horizontal well with multiporosity and multipermeability media was established. The numerical solution was solved by the finite element method and verified by a comparison with the analytical solution and field data. The differences of flow regimes between triple-porosity, dual-permeability (TPDP) and triple-porosity, triple-permeability (TPTP) models were identified. Moreover, the productivity contribution degree of multimedium was analyzed. The results showed that for the multiporosity flowing states, the well bottomhole pressure drop became slower, the linear flow no longer arose, and the pressure wave arrived quickly at the closed reservoir boundary. The contribution ratio of the matrix system, natural fracture system, and network fracture system during SRV-fractured horizontal well production were 7.85%, 43.67%, and 48.48%, respectively in the first year, 14.60%, 49.23%, and 36.17%, respectively in the fifth year, and 20.49%, 46.79%, and 32.72%, respectively in the 10th year. This study provides a theoretical contribution to a better understanding of multiscale flow mechanisms in unconventional reservoirs.


SPE Journal ◽  
2017 ◽  
Vol 23 (02) ◽  
pp. 346-366 ◽  
Author(s):  
Haibin Chang ◽  
Dongxiao Zhang

Summary Economic production from shale-gas reservoirs typically relies on the drilling of horizontal wells and hydraulic fracturing in multiple stages. In addition to the creation of hydraulic fractures, hydraulic-fracturing treatment can also reopen existing natural fractures, which can create a complex-fracture network. The area that is covered by the fracture network is usually termed the stimulated reservoir volume (SRV), and the spatial extent and properties of the SRV are crucial for shale-gas-production behavior. In this work, we propose a method for history matching of the SRV of shale-gas reservoirs using production data. For each hydraulic-fracturing stage, the fracture network is parameterized with one major fracture of the hydraulic fractures and the SRV that represents minor hydraulic fractures and reopened natural fractures. The major fracture is modeled explicitly, whereas the SRV is modeled by the dual-permeability/dual-porosity (DP/DP) model. Moreover, the spatial extent of the SRV is parameterized by the level-set-function values on a predefined representing-node system. After parameterization, an iterative ensemble smoother is used to perform history matching. Both single-stage-fracturing cases and multistage-fracturing cases are set up to test the performance of the proposed method. Numerical results demonstrate that by use of the proposed method, the SRV can be well-recognized by assimilating production data.


2021 ◽  
pp. 1-20
Author(s):  
Ziming Xu ◽  
Juliana Y. Leung

Summary The discrete fracture network (DFN) model is widely used to simulate and represent the complex fractures occurring over multiple length scales. However, computational constraints often necessitate that these DFN models be upscaled into a dual-porositydual-permeability (DPDK) model and discretized over a corner-point grid system, which is still commonly implemented in many commercial simulation packages. Many analytical upscaling techniques are applicable, provided that the fracture density is high, but this condition generally does not hold in most unconventional reservoir settings. A particular undesirable outcome is that connectivity between neighboring fracture cells could be erroneously removed if the fracture plane connecting the two cells is not aligned along the meshing direction. In this work, we propose a novel scheme to detect such misalignments and to adjust the DPDK fracture parameters locally, such that the proper fracture connectivity can be restored. A search subroutine is implemented to identify any diagonally adjacent cells of which the connectivity has been erroneously removed during the upscaling step. A correction scheme is implemented to facilitate a local adjustment to the shape factors in the vicinity of these two cells while ensuring the local fracture intensity remains unaffected. The results are assessed in terms of the stimulated reservoir volume calculations, and the sensitivity to fracture intensity is analyzed. The method is tested on a set of tight oil models constructed based on the Bakken Formation. Simulation results of the corrected, upscaled models are closer to those of DFN simulations. There is a noticeable improvement in the production after restoring the connectivity between those previously disconnected cells. The difference is most significant in cases with medium DFN density, where more fracture cells become disconnected after upscaling (this is also when most analytical upscaling techniques are no longer valid); in some 2D cases, up to a 22% difference in cumulative production is recorded. Ignoring the impacts of mesh discretization could result in an unintended reduction in the simulated fracture connectivity and a considerable underestimation of the cumulative production.


Sign in / Sign up

Export Citation Format

Share Document