Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application

2015 ◽  
Vol 9 (6) ◽  
pp. 979-987 ◽  
Author(s):  
Lina Gan ◽  
Shan Lei ◽  
Jian Yu ◽  
Hongtao Ma ◽  
Yo Yamamoto ◽  
...  
2011 ◽  
Vol 356-360 ◽  
pp. 974-979 ◽  
Author(s):  
Xian Long Zhang ◽  
Bo Wen Shi ◽  
Xue Ping Wu ◽  
Wei Ping Jiang ◽  
Bao Jun Yang ◽  
...  

Palygorskite supported manganese oxide catalysts (MnOx/PG) were prepared for lower temperature selective catalytic reduction (SCR) of NOx by NH3. Catalyst’s SCR activity was estimated at varied temperatures. Catalyst’s properties were characterized by XRD, NH3adsorption and TPD. Results showed that MnOx/PG catalyst was highly active for SCR at low-temperature. It was also found that NH3 was mainly adsorbed on palygorskite in two forms. Weakly adsorbed NH3, which was seldom inhibited by loading of MnOx, but was more favorable to SCR. Whereas strongly adsorbed NH3was more likely to be inhibited by MnOx loading but was inessential for SCR.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


2014 ◽  
Vol 147 ◽  
pp. 132-143 ◽  
Author(s):  
R.V. Gulyaev ◽  
E.M. Slavinskaya ◽  
S.A. Novopashin ◽  
D.V. Smovzh ◽  
A.V. Zaikovskii ◽  
...  

Author(s):  
Jae Gu Heo ◽  
Mahboob Ullah ◽  
Myoung-Pyo Chun ◽  
Yong Sik Chu ◽  
Seong Gwan Seo ◽  
...  

2017 ◽  
Vol 31 (8) ◽  
pp. 8580-8593 ◽  
Author(s):  
Xiaolong Tang ◽  
Jingying Li ◽  
Honghong Yi ◽  
Qingjun Yu ◽  
Fengyu Gao ◽  
...  

Author(s):  
Heinz Hacker ◽  
Cord Albrecht ◽  
Heinz Laupenmühlen ◽  
Herbert Salzburger ◽  
Walter Ihlein

1962 ◽  
Vol 31 (2) ◽  
pp. 136-142
Author(s):  
Tadashi Ohtake ◽  
Sadayoshi Morita ◽  
Susumu Goda ◽  
Masao Kanamori ◽  
Toshimasa Okabe ◽  
...  

2021 ◽  
Author(s):  
Yuki Omori ◽  
Ayaka Shigemoto ◽  
Kohei Sugihara ◽  
Takuma Higo ◽  
Toru Uenishi ◽  
...  

Pd catalyst (Pd/Ce<sub>0.7</sub>Zr<sub>0.3</sub>O<sub>2</sub>) in an electric field exhibits extremely high three-way catalytic activity (TWC: NO-C<sub>3</sub>H<sub>6</sub>-CO-O<sub>2</sub>-H<sub>2</sub>O). By applying an electric field to the semiconductor catalyst, low-temperature operation of TWC can be achieved even at 473 K by virtue of the activated surface-lattice oxygen.


Sign in / Sign up

Export Citation Format

Share Document