Hydraulic-jump behavior of a thin film flowing down an inclined plane under an electrostatic field

2008 ◽  
Vol 25 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Kwang Seok Kim ◽  
Hyo Kim
2016 ◽  
Vol 325 ◽  
pp. 86-97 ◽  
Author(s):  
M. Sivapuratharasu ◽  
S. Hibberd ◽  
M.E. Hubbard ◽  
H. Power

2006 ◽  
Vol 88 (15) ◽  
pp. 153116 ◽  
Author(s):  
Wei Lu ◽  
Dongchoul Kim

2012 ◽  
Author(s):  
Ritha Soulimane ◽  
Anne-Marie Haghiri ◽  
Wilfrid Prellier ◽  
Gilles Poullain ◽  
Rachid Bouregba ◽  
...  

2013 ◽  
Vol 9 (4) ◽  
pp. 471-476 ◽  
Author(s):  
Soon-Won Lee ◽  
Chul-Hyun Kim ◽  
Sang-Geul Lee ◽  
Jun-Ho Jeong ◽  
Jun-Hyuk Choi ◽  
...  

2009 ◽  
Vol 21 (8) ◽  
pp. 083305 ◽  
Author(s):  
Thomas Ward ◽  
Chi Wey ◽  
Robert Glidden ◽  
A. E. Hosoi ◽  
A. L. Bertozzi

1996 ◽  
Vol 06 (C3) ◽  
pp. C3-271-C3-276
Author(s):  
V. S. Lysenko ◽  
Y. V. Gomeniuk ◽  
I. P. Tyagulski ◽  
I. N. Osiyuk ◽  
V. Z. Lozovski ◽  
...  

2013 ◽  
Vol 7 ◽  
pp. 65-87 ◽  
Author(s):  
A. M. Siddiqui ◽  
A. Ashraf ◽  
Q. A. Azim ◽  
B. S. Babcock

2000 ◽  
Vol 413 ◽  
pp. 355-378 ◽  
Author(s):  
SERAFIM KALLIADASIS

A thin liquid mass of fixed volume spreading under the action of gravity on an inclined plane develops a fingering instability at the front. In this study we consider the motion of a viscous sheet down a pre-wetted plane with a large inclination angle. We demonstrate that the instability is a phase instability associated with the translational invariance of the system in the direction of flow and we analyse the weakly nonlinear regime of the instability by utilizing methods from dynamical systems theory. It is shown that the evolution of the fingers is governed by a Kuramoto–Sivashinsky-type partial differential equation with solution a saw-tooth pattern when the inclined plane is pre-wetted with a thin film, while the presence of a thick film suppresses fingering.


Sign in / Sign up

Export Citation Format

Share Document