translational invariance
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 35)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
pp. 013102
Author(s):  
Filiberto Ares ◽  
José G Esteve ◽  
Fernando Falceto

Abstract In this paper, we study the localized states of a generic quadratic fermionic chain with finite-range couplings and an inhomogeneity in the hopping (defect) that breaks translational invariance. When the hopping of the defect vanishes, which represents an open chain, we obtain a simple bulk-edge correspondence: the zero-energy modes localized at the ends of the chain are related to the roots of a polynomial determined by the couplings of the Hamiltonian of the bulk. From this result, we define an index that characterizes the different topological phases of the system and can be easily computed by counting the roots of the polynomial. As the defect is turned on and varied adiabatically, the zero-energy modes may cross the energy gap and connect the valence and conduction bands. We analyze the robustness of the connection between bands against perturbations of the Hamiltonian. The pumping of states from one band to the other allows the creation of particle–hole pairs in the bulk. An important ingredient for our analysis is the transformation of the Hamiltonian under the standard discrete symmetries, C, P, T, as well as a fourth one, peculiar to our system, that is related to the existence of a gap and localized states.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xuan Yang ◽  
Yuping Duan ◽  
Shuqing Li ◽  
Huifang Pang ◽  
Lingxi Huang ◽  
...  

AbstractHigh-temperature electromagnetic (EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range. In this work, a novel microwave modulator is fabricated by introducing carbonyl iron particles (CIP)/resin into channels of carbonized wood (C-wood). Innovatively, the spaced arrangement of two microwave absorbents not only achieves a synergistic enhancement of magnetic and dielectric losses, but also breaks the translational invariance of EM characteristics in the horizontal direction to obtain multiple phase discontinuities in the frequency range of 8.2–18.0 GHz achieving modulation of reflected wave radiation direction. Accordingly, CIP/C-wood microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz and the maximum EM protection efficiency over 97% with a thickness of only 1.5 mm in the temperature range 298–673 K. Besides, CIP/C-wood microwave modulator shows stable and low thermal conductivities, as well as monotonic electrical conductivity-temperature characteristics, therefore it can also achieve thermal infrared stealth and working temperature monitoring in wide temperature ranges. This work provides an inspiration for the design of high-temperature EM protection materials with multiple EM protection mechanisms and functions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yueming Guo ◽  
Sergei V. Kalinin ◽  
Hui Cai ◽  
Kai Xiao ◽  
Sergiy Krylyuk ◽  
...  

AbstractCrystallographic defects can now be routinely imaged at atomic resolution with aberration-corrected scanning transmission electron microscopy (STEM) at high speed, with the potential for vast volumes of data to be acquired in relatively short times or through autonomous experiments that can continue over very long periods. Automatic detection and classification of defects in the STEM images are needed in order to handle the data in an efficient way. However, like many other tasks related to object detection and identification in artificial intelligence, it is challenging to detect and identify defects from STEM images. Furthermore, it is difficult to deal with crystal structures that have many atoms and low symmetries. Previous methods used for defect detection and classification were based on supervised learning, which requires human-labeled data. In this work, we develop an approach for defect detection with unsupervised machine learning based on a one-class support vector machine (OCSVM). We introduce two schemes of image segmentation and data preprocessing, both of which involve taking the Patterson function of each segment as inputs. We demonstrate that this method can be applied to various defects, such as point and line defects in 2D materials and twin boundaries in 3D nanocrystals.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Wei-Ting Kuo ◽  
Daniel Arovas ◽  
Smitha Vishveshwara ◽  
Yi-Zhuang You

We present a formulation for investigating quench dynamics across quantum phase transitions in the presence of decoherence. We formulate decoherent dynamics induced by continuous quantum non-demolition measurements of the instantaneous Hamiltonian. We generalize the well-studied universal Kibble-Zurek behavior for linear temporal drive across the critical point. We identify a strong decoherence regime wherein the decoherence time is shorter than the standard correlation time, which varies as the inverse gap above the groundstate. In this regime, we find that the freeze-out time \bar{t}\sim\tau^{{2\nu z}/({1+2\nu z})}t-∼τ2νz/(1+2νz) for when the system falls out of equilibrium and the associated freeze-out length \bar{\xi}\sim\tau^{\nu/({1+2\nu z})}ξ‾∼τν/(1+2νz) show power-law scaling with respect to the quench rate 1/\tau1/τ, where the exponents depend on the correlation length exponent \nuν and the dynamical exponent zz associated with the transition. The universal exponents differ from those of standard Kibble-Zurek scaling. We explicitly demonstrate this scaling behavior in the instance of a topological transition in a Chern insulator system. We show that the freeze-out time scale can be probed from the relaxation of the Hall conductivity. Furthermore, on introducing disorder to break translational invariance, we demonstrate how quenching results in regions of imbalanced excitation density characterized by an emergent length scale which also shows universal scaling. We perform numerical simulations to confirm our analytical predictions and corroborate the scaling arguments that we postulate as universal to a host of systems.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Álvaro Álvarez-Domínguez ◽  
Luis J. Garay ◽  
David García-Heredia ◽  
Mercedes Martín-Benito

Abstract In quantum field theory, particle creation occurs, in general, when an intense external field, such as an electromagnetic field, breaks time translational invariance. This leads to an ambiguity in the definition of the vacuum state. In cosmological backgrounds this ambiguity has been reduced by imposing that the quantization preserves the symmetries of the system and that the dynamics is unitarily implemented. In this work, we apply these requirements to the quantization of a massive charged fermionic field coupled to a classical time-dependent homogeneous electric field, extending previous studies done for a scalar field. We characterize the quantizations fulfilling the criteria above and we show that they form a unique equivalence class of unitarily related quantizations, which provide a well-defined number of created particles at all finite times.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Eduardo I. Bribián ◽  
Jorge Dasilva Golán ◽  
Margarita García Pérez ◽  
Alberto Ramos

AbstractIn this paper we explore a finite volume renormalization scheme that combines three main ingredients: a coupling based on the gradient flow, the use of twisted boundary conditions and a particular asymmetric geometry, that for SU(N) gauge theories consists on a hypercubic box of size $$l^2 \times (Nl)^2$$ l 2 × ( N l ) 2 , a choice motivated by the study of volume independence in large N gauge theories. We argue that this scheme has several advantages that make it particularly suited for precision determinations of the strong coupling, among them translational invariance, an analytic expansion in the coupling and a reduced memory footprint with respect to standard simulations on symmetric lattices, allowing for a more efficient use of current GPU clusters. We test this scheme numerically with a determination of the $$\Lambda $$ Λ parameter in the SU(3) pure gauge theory. We show that the use of an asymmetric geometry has no significant impact in the size of scaling violations, obtaining a value $$\Lambda _{\overline{\mathrm{MS}}}\sqrt{8 t_0} =0.603(17)$$ Λ MS ¯ 8 t 0 = 0.603 ( 17 ) in good agreement with the existing literature. The role of topology freezing, that is relevant for the determination of the coupling in this particular scheme and for large N applications, is discussed in detail.


Author(s):  
Rodrigo C. V. Coelho ◽  
Nuno A. M. Araújo ◽  
Margarida M. Telo da Gama

Activity in nematics drives interfacial flows that lead to preferential alignment that is tangential or planar for extensile systems (pushers) and perpendicular or homeotropic for contractile ones (pullers). This alignment is known as active anchoring and has been reported for a number of systems and described using active nematic hydrodynamic theories. The latter are based on the one-elastic constant approximation, i.e. they assume elastic isotropy of the underlying passive nematic. Real nematics, however, have different elastic constants, which lead to interfacial anchoring. In this paper, we consider elastic anisotropy in multiphase and multicomponent hydrodynamic models of active nematics and investigate the competition between the interfacial alignment driven by the elastic anisotropy of the passive nematic and the active anchoring. We start by considering systems with translational invariance to analyse the alignment at flat interfaces and, then, consider two-dimensional systems and active nematic droplets. We investigate the competition of the two types of anchoring over a wide range of the other parameters that characterize the system. The results of the simulations reveal that the active anchoring dominates except at very low activities, when the interfaces are static. In addition, we found that the elastic anisotropy does not affect the dynamics but changes the active length that becomes anisotropic. This article is part of the theme issue ‘Progress in mesoscale methods for fluid dynamics simulation’.


2021 ◽  
Author(s):  
Tao He ◽  
Jie Yao ◽  
Weidong Tian ◽  
Zhang Yi ◽  
Wei Tang ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 1460-1462
Author(s):  
Yueming Guo ◽  
Andrew R. Lupini ◽  
Hui Cai ◽  
Kai Xiao ◽  
Sergiy Krylyuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document