oxide thin film
Recently Published Documents


TOTAL DOCUMENTS

3294
(FIVE YEARS 707)

H-INDEX

94
(FIVE YEARS 10)

2022 ◽  
Vol 2 ◽  
Author(s):  
Sami Bolat ◽  
Evangelos Agiannis ◽  
Shih-Chi Yang ◽  
Moritz H. Futscher ◽  
Abdesselam Aribia ◽  
...  

Solution processing and low-temperature annealing (T < 300°C) of the precursor compounds promise low-cost manufacturing for future applications of flexible oxide electronics. However, thermal budget reduction comes at the expense of increased charge trapping residuals in the dielectric layers, which result in hysteretic switching of transistors. This work reports on a novel bilayer dielectric scheme combining aluminum oxide (AlOx) as a positive charge trapping insulator and yttrium aluminum oxide (YAlOx) as a negative charge trapping dielectric to obtain hysteresis free switching in the solution-processed metal-oxide thin-film transistors. Devices were processed at a thermal budget of 250°C, without an encapsulation layer. The presence of H+ and OH− in the AlOx were found responsible for the hysteresis in the switching, which was suppressed successfully with the thickness optimization of the YAlOx in the dielectric stack. Fabricated devices yield ON/OFF ratios of 106, sub-pA level gate leakage currents, a subthreshold swing of 150 mV/decade, and field-effect mobility of 1.5 cm2/V-sec.


2022 ◽  
Author(s):  
Ali Sehpar Shikoh ◽  
Gi Sang Choi ◽  
Sungmin Hong ◽  
Kwang Seob Jeong ◽  
Jaekyun Kim

Abstract We report that high absorption PbSe colloidal quantum dots (QDs) having a peak absorbance beyond 2100 nm were synthesized and incorporated into InSnZnO (ITZO) channel layer-based thin film transistors (TFTs). It was intended that PbSe QDs with proportionally less photocurrent modulation can be remedied by semiconducting and low off-current ITZO-based TFT configuration. Multiple deposition scheme of PbSe QDs on ITZO metal oxide thin film gave rise to nearly linear increase of film thickness with acceptably uniform and smooth surface (less than 10 nm). Hybrid PbSe/ITZO thin film-based phototransistor exhibited the best performance of near infrared (NIR) detection in terms of response time, sensitivity and detectivity as high as 0.38 s, 3.91 and 4.55 × 107 Jones at room temperature, respectively. This is indebted mainly from the effective diffusion of photogenerated carrier from the PbSe surface to ITZO channel layer as well as from the conduction band alignment between them. Therefore, we believe that our hybrid PbSe/ITZO material platform can be widely used to be in favour of incorporation of solution-processed colloidal light absorbing material into the high-performance metal oxide thin film transistor configuration.


2022 ◽  
pp. 514-522
Author(s):  
Ronen Gottesman ◽  
Isabella Peracchi ◽  
Jason L. Gerke ◽  
Rowshanak Irani ◽  
Fatwa F. Abdi ◽  
...  

2022 ◽  
Author(s):  
Sung Hyeon Jung ◽  
Ji Sook Yang ◽  
Young Been Kim ◽  
Nishad G Deshpande ◽  
Dong Su Kim ◽  
...  

We suggested strategically designed electrodeposition method for the coating of p-type copper(I) oxide (Cu2O) channel for oxide thin film transistors. Up to now, conventional p-type oxide semiconductors have revealed poor...


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Wei-Sheng Liu ◽  
Chih-Hao Hsu ◽  
Yu Jiang ◽  
Yi-Chun Lai ◽  
Hsing-Chun Kuo

In this study, high-performance indium–gallium–zinc oxide thin-film transistors (IGZO TFTs) with a dual-gate (DG) structure were manufactured using plasma treatment and rapid thermal annealing (RTA). Atomic force microscopy measurements showed that the surface roughness decreased upon increasing the O2 ratio from 16% to 33% in the argon–oxygen plasma treatment mixture. Hall measurement results showed that both the thin-film resistivity and carrier Hall mobility of the Ar–O2 plasma–treated IGZO thin films increased with the reduction of the carrier concentration caused by the decrease in the oxygen vacancy density; this was also verified using X-ray photoelectron spectroscopy measurements. IGZO thin films treated with Ar–O2 plasma were used as channel layers for fabricating DG TFT devices. These DG IGZO TFT devices were subjected to RTA at 100 °C–300 °C for improving the device characteristics; the field-effect mobility, subthreshold swing, and ION/IOFF current ratio of the 33% O2 plasma–treated DG TFT devices improved to 58.8 cm2/V·s, 0.12 V/decade, and 5.46 × 108, respectively. Long-term device stability reliability tests of the DG IGZO TFTs revealed that the threshold voltage was highly stable.


Author(s):  
Chao-I Liu ◽  
Pin-Hung Chung ◽  
You-Yan Lu ◽  
Chia-Tung Kuo ◽  
Tzu-Hsuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document