magnetic oxide
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 30)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 11 (1) ◽  
pp. 176-190
Author(s):  
Lijo P. Mona ◽  
Sandile P. Songca ◽  
Peter A. Ajibade

Abstract The synthesis, characterization, and applications of iron oxide nanorods have received attention in recent years. Even though there are several studies on the biological applications of iron oxide nanoparticles, recent studies have shown that rod-shaped iron oxides are effective in magnetic hyperthermia (MHT) as therapeutic technique to treat cancer. This review focused on the synthesis and encapsulation of magnetic iron oxide nanorods (MIONRs) and their use in (MHT) and photothermal therapy (PTT) for cancer cells. Among the synthetic methods that have been used to prepare MIONRs, some could be used to precisely control the particle size of the as-prepared magnetic iron oxide nanoparticles (MIONs), while others could be used to prepare monodisperse particles with uniform size distributions. Some of the results presented in this review showed that magnetic oxide nanorods are more potent in MHT than polyhedral-shaped MIONs. The review shows that mixtures of polyhedral- and rod-shaped MIONs resulted in 59 and 77% cell death, while monodisperse MIONRs resulted in 95% cell death. It could thus be concluded that, for magnetic iron oxide to be effective in MHT and PTT, it is important to prepare monodisperse magnetic oxide nanorods.


Author(s):  
Maria Yousuf Lodhi ◽  
Muhammad Azhar Khan ◽  
Abdul Majeed ◽  
Sarah Alharthi ◽  
Mohammed A. Amin ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 287-299

Abstract: In this work, we demonstrate the feasibility of preparing a commercially important type of magnetic oxide, BaM (BaFe12O19) hexaferrite, using scrap iron filings as an iron source. The hexaferrites were prepared by conventional solid state reaction and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and magnetization measurements. XRD patterns of samples prepared by mixing powders extracted from the iron filings with appropriate amounts of barium carbonate and sintering at 1200 °C revealed the presence of a major BaM hexaferrite with small amounts of nonmagnetic α-Fe2O3 oxide phase. On the other hand, SEM images of the samples showed clear crystallization of perfect hexagonal platelets of BaM hexaferrite, which was further confirmed by the Curie temperature determined from the thermomagnetic measurements. The saturation magnetization of the samples was in the range of 45.1– 52.1 emu/g and the remnant magnetization in the range of 14.8 – 19.0 emu/g. These values and the moderate coercivity of ~ 1 kOe suggest that the prepared samples could potentially be useful for high-density magnetic recording. Keywords: Hexaferrite, Solid waste, Magnetic Properties, Structural properties, Magnetic recording.


2021 ◽  
Vol 549 ◽  
pp. 149204
Author(s):  
Ru.G. Nikov ◽  
A.Og. Dikovska ◽  
G.V. Avdeev ◽  
G.B. Atanasova ◽  
N.N. Nedyalkov

2021 ◽  
Author(s):  
Jyoti Saini ◽  
Monika Sharma ◽  
Bijoy Kumar Kuanr

Functional magnetic oxide particles offer exceptional GHz frequency capabilities, which can significantly enhance the utility of communication and signal processing devices.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4110
Author(s):  
Ebenezer C. Nnadozie ◽  
Peter A. Ajibade

The demand for water is predicted to increase significantly over the coming decades; thus, there is a need to develop an inclusive wastewater decontaminator for the effective management and conservation of water. Magnetic oxide nanocomposites have great potentials as global and novel remediators for wastewater treatment, with robust environmental and economic gains. Environment-responsive nanocomposites would offer wide flexibility to harvest and utilize massive untapped natural energy sources to drive a green economy in tandem with the United Nations Sustainable Development Goals. Recent attempts to engineer smart magnetic oxide nanocomposites for wastewater treatment has been reported by several researchers. However, the magnetic properties of superparamagnetic nanocomposite materials and their adsorption properties nexus as fundamental to the design of recyclable nanomaterials are desirable for industrial application. The potentials of facile magnetic recovery, ease of functionalization, reusability, solar responsiveness, biocompatibility and ergonomic design promote the application of magnetic oxide nanocomposites in wastewater treatment. The review makes a holistic attempt to explore magnetic oxide nanocomposites for wastewater treatment; futuristic smart magnetic oxides as an elixir to global water scarcity is expounded. Desirable adsorption parameters and properties of magnetic oxides nanocomposites are explored while considering their fate in biological and environmental media.


Sign in / Sign up

Export Citation Format

Share Document