Influence of flow-induced oscillating disturbance on the surface heat transfer of impingement flow

Author(s):  
Xiaohang Qu ◽  
Xiaoni Qi ◽  
Qianjian Guo ◽  
Yongqi Liu
Author(s):  
Roger W. Moss ◽  
Roger W. Ainsworth ◽  
Tom Garside

Measurements of turbine blade surface heat transfer in a transient rotor facility are compared with predictions and equivalent cascade data. The rotating measurements involved both forwards and reverse rotation (wake free) experiments. The use of thin-film gauges in the Oxford Rotor Facility provides both time-mean heat transfer levels and the unsteady time history. The time-mean level is not significantly affected by turbulence in the wake; this contrasts with the cascade response to freestream turbulence and simulated wake passing. Heat transfer predictions show the extent to which such phenomena are successfully modelled by a time-steady code. The accurate prediction of transition is seen to be crucial if useful predictions are to be obtained.


2013 ◽  
Vol 275-277 ◽  
pp. 83-86
Author(s):  
Chun Lin Zhang ◽  
Nian Su Hu ◽  
Wen Yang ◽  
Jian Mei Wang ◽  
Min Li ◽  
...  

With the development of the power grid, the proportion of large capacity unit is increasing rapidly. It requires a more in-depth study on the reliability of the unit, especially for the unit adjusting the peak. This paper concerned on the research of the surface heat transfer coefficient, which is the key factor affect the precision in thermal stress analysis. The surface heat transfer coefficient is obtained via the numerical calculation for the steam’s flow state and the transient heat transfer between rotor. This paper mainly describes the steam’s flow state and the transient heat transfer with the steam seal, and the results show that the direct numerical calculation is resultful in this subject.


2005 ◽  
Vol 50 (2) ◽  
pp. 387-397 ◽  
Author(s):  
Walfre Franco ◽  
Jie Liu ◽  
Guo-Xiang Wang ◽  
J Stuart Nelson ◽  
Guillermo Aguilar

Sign in / Sign up

Export Citation Format

Share Document