Anticipated Degradation Modes of Metallic Engineered Barriers for High-Level Nuclear Waste Repositories

JOM ◽  
2014 ◽  
Vol 66 (3) ◽  
pp. 503-525 ◽  
Author(s):  
Martín A. Rodríguez
2020 ◽  
Vol 205 ◽  
pp. 01001
Author(s):  
Antonio Gens ◽  
Ramon B. de Vasconcelos ◽  
Sebastià Olivella

Recently, there is a tendency to explore the possibility of increasing the maximum design temperature in deep geological repositories for high-level nuclear waste and spent fuel. In the paper, a number of issues related to the use of higher temperatures are reviewed. Both bentonite barriers and argillaceous host rocks are addressed. An application involving the modelling of a large-scale field test conducted at a maximum temperature of 140ºC is presented. It is shown that currently available theoretical formulations and computer codes are capable to deal with temperatures above 100ºC and to reproduce satisfactorily the thermally-induced overpressures in the rock.


2015 ◽  
Vol 32 (10) ◽  
pp. 854-857
Author(s):  
Albert Martínez-Torrents ◽  
Javier Giménez ◽  
Joan de Pablo ◽  
Ignasi Casas

Author(s):  
Lana L. Wong ◽  
John C. Estill ◽  
David V. Fix ◽  
Rau´l B. Rebak

Yucca Mountain (Nevada) is designated as a high-level nuclear waste repository. The nuclear waste will be isolated by a series of engineered barriers. The metallic engineered barriers will consist of a double-wall container with a detached drip shield. The material for the external wall of the container is Alloy 22, a corrosion-resistant Ni-Cr-Mo alloy. Titanium grade 7 has been proposed for the drip shield. Ti alloys are highly resistant to all forms of corrosion due to the formation of a stable, protective and strongly adherent oxide film. The aim of this research was to characterize the general and localized corrosion behavior of Ti Gr 7, 16 and 12 in simulated concentrated ground waters. Welded and non-welded coupons were exposed for up to 5 years to the vapor and liquid phases of acidic and alkaline multi-ionic solutions at 60°C and 90°C. This paper describes the results obtained after approximately 2-1/2- to 5-1/2-year exposure to the testing electrolyte solutions. In general, the highest corrosion rate was obtained for Ti Gr 12; however, in all of the tested conditions, the corrosion rate was generally lower than 100 nm/yr. For all alloys, the highest corrosion rate was obtained in the concentrated alkaline solution.


Sign in / Sign up

Export Citation Format

Share Document