liquid phases
Recently Published Documents


TOTAL DOCUMENTS

1407
(FIVE YEARS 231)

H-INDEX

59
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262203
Author(s):  
Michał Beczek ◽  
Magdalena Ryżak ◽  
Rafał Mazur ◽  
Agata Sochan ◽  
Cezary Polakowski ◽  
...  

Soil splash is the first step in the process of water erosion, where impacting raindrops cause the detachment and transport of soil material. One of the factors that strongly influences the magnitude of soil splash is the incline of the surface (slope). The aim of this study was to investigate the effect of the slope on the course of the splash phenomenon caused by single-drop impact (one drop impact per soil sample), with respect to the mass and proportions of the ejected material, taking into account its division into solid and liquid phases i.e. soil and water. The investigation was carried out using three types of soil with different textures, in moistened (pressure head corresponding to -1.0 kPa) and air-dry (-1500 kPa) conditions. The soil samples were on three angles of slope, being 5°, 15°, and 30°, respectively. After a single-drop impact with a diameter of 4.2 mm, the ejected material was collected using a splash cup. The following quantities of splashed material were measured: the total mass, the mass of the solid phase, and the mass of the liquid phase. Additionally, the distribution and proportions (soil/water) of the splashed material were analysed in both the upslope and downslope directions. It was found that: (i) the change of slope had a variable influence on the measured quantities for different soils; (ii) in the case of moistened samples, the measured values were mainly influenced by the texture, while in the dry samples, by the angle of the slope; (iii) with the increase of slope, the splashed material was mostly ejected in the downslope direction (irrespective of moisture conditions); (iv) in the moistened samples, the ejected material consisted mostly of water, while in the dry samples it was soil—this occurred for material ejected both upslope and downslope. The obtained results are important for improving the physical description of the process of splash erosion. A more thorough understanding and better recognition of the mechanisms governing this phenomenon at all stages could contribute to the development of more effective methods for protecting soil against erosion.


2022 ◽  
Vol 355 ◽  
pp. 02009
Author(s):  
Qiuping Wang ◽  
Jing Xu ◽  
Baigong Wu ◽  
Jiayang Gu

The mold filling of semi-solid slurry involves intricate theory and physical phenomenon. The influence of inner gate shape and filling speed on free surface and liquid-solid distribution is investigated by adopting finite element numerical simulation. The effect of viscosity is considered in the modelling. The results show that the inner gate shape affects the free surface. The filling speed of 3 m/s is favorable for the uniform distribution of solid-liquid phases. It has important guiding significance for the optimization of semi-solid forming process and molding design.


2021 ◽  
Vol 24 (4) ◽  
pp. 17-27
Author(s):  
Hanna S. Vorobieva ◽  

The degree of dryness is the most important parameter that determines the state of a real gas and the thermodynamic properties of the working fluid in a two-phase region. This article presents a modified Redlich-Kwong-Aungier equation of state to determine the degree of dryness in the two-phase region of a real gas. Selected as the working fluid under study was CO2. The results were validated using the Span-Wanger equation presented in the mini-REFPROP program, the equation being closest to the experimental data in the CO2 two-phase region. For the proposed method, the initial data are temperature and density, critical properties of the working fluid, its eccentricity coefficient, and molar mass. In the process of its solution, determined are the pressure, which for a two-phase region becomes the pressure of saturated vapor, the volumes of the gas and liquid phases of a two-phase region, the densities of the gas and liquid phases, and the degree of dryness. The saturated vapor pressure was found using the Lee-Kesler and Pitzer method, the results being in good agreement with the experimental data. The volume of the gas phase of a two-phase region is determined by the modified Redlich-Kwong-Aungier equation of state. The paper proposes a correlation equation for the scale correction used in the Redlich-Kwongda-Aungier equation of state for the gas phase of a two-phase region. The volume of the liquid phase was found by the Yamada-Gann method. The volumes of both phases were validated against the basic data, and are in good agreement. The results obtained for the degree of dryness also showed good agreement with the basic values, which ensures the applicability of the proposed method in the entire two-phase region, limited by the temperature range from 220 to 300 K. The results also open up the possibility to develop the method in the triple point region (216.59K-220 K) and in the near-critical region (300 K-304.13 K), as well as to determine, with greater accuracy, the basic CO2 thermodynamic parameters in the two-phase region, such as enthalpy, entropy, viscosity, compressibility coefficient, specific heat capacity and thermal conductivity coefficient for the gas and liquid phases. Due to the simplicity of the form of the equation of state and a small number of empirical coefficients, the obtained technique can be used for practical problems of computational fluid dynamics without spending a lot of computation time.


Author(s):  
Kirill Zubarev

Two differential equations of moisture transfer based on the theory of moisture potential have been considered. The first equation includes the record of moisture transfer mechanisms of  vapor and liquid phases and their relationship. The second equation is a simplified form of the first equation which makes it possible to apply a discrete-continuous approach. The peculiar properties of the boundary conditions setting of the outside air for temperature and humidity fields have been presented. It is proved that the use of the discrete-continuous method provides high accuracy of calculations and can be used in engineering practice to assess the unsteady humidity regime of enclosing structures.


2021 ◽  
Vol 118 (51) ◽  
pp. e2109967118
Author(s):  
Fleurie M. Kelley ◽  
Bruna Favetta ◽  
Roshan Mammen Regy ◽  
Jeetain Mittal ◽  
Benjamin S. Schuster

Cells contain membraneless compartments that assemble due to liquid–liquid phase separation, including biomolecular condensates with complex morphologies. For instance, certain condensates are surrounded by a film of distinct composition, such as Ape1 condensates coated by a layer of Atg19, required for selective autophagy in yeast. Other condensates are multiphasic, with nested liquid phases of distinct compositions and functions, such as in the case of ribosome biogenesis in the nucleolus. The size and structure of such condensates must be regulated for proper biological function. We leveraged a bioinspired approach to discover how amphiphilic, surfactant-like proteins may contribute to the structure and size regulation of biomolecular condensates. We designed and examined families of amphiphilic proteins comprising one phase-separating domain and one non–phase-separating domain. In particular, these proteins contain the soluble structured domain glutathione S-transferase (GST) or maltose binding protein (MBP), fused to the intrinsically disordered RGG domain from P granule protein LAF-1. When one amphiphilic protein is mixed in vitro with RGG-RGG, the proteins assemble into enveloped condensates, with RGG-RGG at the core and the amphiphilic protein forming the surface film layer. Importantly, we found that MBP-based amphiphiles are surfactants and influence droplet size, with increasing surfactant concentration resulting in smaller droplet radii. In contrast, GST-based amphiphiles at increased concentrations coassemble with RGG-RGG into multiphasic structures. We propose a mechanism for these experimental observations, supported by molecular simulations of a minimalist model. We speculate that surfactant proteins may play a significant role in regulating the structure and function of biomolecular condensates.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jörg Hinrichs ◽  
Reinhard Kohlus

AbstractModelling the macroscopic rheology of non-Brownian suspensions is complicated by the non-linear behaviour that originates from the interaction between solid particles and the liquid phase. In this contribution, a model is presented that describes suspension rheology as a function of solid volume fraction and shear rate dependency of both the liquid phase, as well as the suspension as a whole. It is experimentally validated using rotational rheometry ($$\varphi$$ φ ≤ 0.40) and capillary rheometry (0.55 ≤ $$\varphi$$ φ  ≤ 0.60) at shear rates > 50 s−1. A modified Krieger-Dougherty relation was used to describe the influence of solid volume fraction on the consistency coefficient, $$K$$ K , and was fitted to suspensions with a shear thinning liquid phase, i.e. having a flow index, $$n$$ n , of 0.50. With the calculated fit parameters, it was possible to predict the consistency coefficients of suspensions with a large variation in the shear rate dependency of the liquid phase ($$n$$ n = 0.20–1.00). With increasing solid volume fraction, the flow indices of the suspensions were found to decrease for Newtonian and mildly shear thinning liquid phases ($$n$$ n ≥0.50), whereas they were found to increase for strongly shear thinning liquid phases ($$n$$ n ≤0.27). It is hypothesized that this is related to interparticle friction and the relative contribution of friction forces to the viscosity of the suspension. The proposed model is a step towards the prediction of the flow curves of concentrated suspensions with non-Newtonian liquid phases at high shear rates.


Author(s):  
Lorena Alcaraz ◽  
Olga Rodríguez Largo ◽  
Francisco J. Alguacil ◽  
Margarita Alvarez Montes ◽  
Carmen Baudín ◽  
...  

An laboratory procedure has been developed to obtain lanthanum oxide from spent fluid catalytic cracking catalyst, commonly used in the cracking the heavy crude oil process. Two different spent fluid catalytic cracking catalysts, which are mainly formed by silica and alumina, and a certain amount of rare earths were leached under several conditions to recover the rare earth from the solids waste. Subsequently, liquid phases were subjected to a liquid-liquid extraction process, and lanthanum was quantitatively stripped using oxalic acid to obtain the corresponding lanthanum oxalates. After the corresponding thermal treatment, these solids were transformed into lanthanum oxide. Both, lanthanum oxalates and oxides solids have been characterized by wide techniques in order to investigate the purity of the phases.


2021 ◽  
Author(s):  
Shuwen Yue ◽  
Marc Riera ◽  
Raja Ghosh ◽  
Athanassios Panagiotopoulos ◽  
Francesco Paesani

Extending on previous work by Riera et al. [J. Chem. Theory Comput. 16, 2246 (2020)], we introduce a second generation family of data-driven many-body MB-nrg models for CO2 and systematically assess how the strength and anisotropy of the CO2-CO2 interactions affect the models' ability to predict vapor, liquid, and vapor-liquid equilibrium properties. Building upon the many-body expansion formalism, we construct a series of MB-nrg models by fitting 1-body and 2-body reference energies calculated at the coupled cluster level of theory for large monomer and dimer training sets. Advancing from the first generation models, we employ the Charge Model 5 scheme to determine the atomic charges and systematically scale the 2-body energies to obtain more accurate descriptions of vapor, liquid, and vapor-liquid equilibrium properties. Comparisons with the polarizable TTM-nrg model, which is constructed from the same training sets as the MB-nrg models but using a simpler representation of short-range interactions based on conventional Born-Mayer functions, showcase the necessity of high dimensional functional forms for an accurate description of the multidimensional energy landscape of liquid CO2. These findings emphasize the key role played by the training set quality and flexibility of the fitting functions in the development of transferable, data-driven models which, accurately representing high-dimensional many-body effects, can enable predictive computer simulations of molecular fluids across the entire phase diagram.


Sign in / Sign up

Export Citation Format

Share Document