Microstructure Modeling in Integrated Computational Materials Engineering (ICME) Settings: Can HDF5 Provide the Basis for an Emerging Standard for Describing Microstructures?

JOM ◽  
2015 ◽  
Vol 68 (1) ◽  
pp. 77-83 ◽  
Author(s):  
G. J. Schmitz
2021 ◽  
pp. 1-26
Author(s):  
Behrooz Jalalahmadi ◽  
Jingfu Liu ◽  
Ziye Liu ◽  
Nick Weinzapfel ◽  
Andrew Vechart

Abstract Additive manufacturing (AM) processes create material directly into a functional shape. Often the material properties vary with part geometry, orientation, and build layout. Today, trial-and-error methods are used to generate material property data under controlled conditions that may not map to the entire range of geometries over a part. Described here is the development of a modeling tool enabling prediction of the performance of parts built with AM, with rigorous consideration of the microstructural properties governing the nucleation and propagation of fatigue cracks. This tool, called DigitalClone® for Additive Manufacturing (DC-AM), is an Integrated Computational Materials Engineering (ICME) tool that includes models of crack initiation and damage progression with the high-fidelity process and microstructure modeling approaches. The predictive model has three main modules: process modeling, microstructure modeling, and fatigue modeling. In this paper, a detailed description and theoretical basis of each module is provided. Experimental validations (microstructure, porosity, and fatigue) of the tool using multiple material characterization and experimental coupon testing for five different AM materials are discussed. The physics-based computational modeling encompassed within DC-AM provides an efficient capability to more fully explore the design space across geometries and materials, leading to components that represent the optimal combination of performance, reliability, and durability.


2021 ◽  
Vol 1035 ◽  
pp. 808-812
Author(s):  
Xing Yang Chang ◽  
Qi Shen ◽  
Wen Xue Fan ◽  
Hai Hao

Traditional casting process optimization usually adopts empirical trial and error method. Process parameters were modified repeatedly within a certain range until a satisfactory solution is obtained, which is costly and inefficient. Therefore, based on integrated computational materials engineering, Magnesium Alloy Simulation Integrated Platform (MASIP) was constructed. MASIP completed the automatic operation of the entire simulation process from the CAD model data input to the process-microstructure-performance. It realized the rapid optimization simulation prediction of process-microstructure-performance, and solved the problems of long cycle and low efficiency of traditional process optimization. This paper studied the low-pressure casting optimization process of magnesium alloy thin-walled cylindrical parts based on MASIP. The calculation took casting temperature, mold temperature and holding pressure as the optimized variables, and the yield strength of the casting as the target variable. The experimental results showed that MASIP can fairly complete the structure simulation and performance prediction of castings, greatly reduce the time cost of the calculation process, and improve the efficiency of process optimization.


Sign in / Sign up

Export Citation Format

Share Document