mold temperature
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 97)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 572 ◽  
pp. 151238
Author(s):  
Dejian Zou ◽  
Tongmin Yu ◽  
Chunzheng Duan

Author(s):  
Zhaoxiang Zhang ◽  
Xiaohong Jia ◽  
Fei Guo ◽  
Xing Huang ◽  
Yuming Wang

ABSTRACT Vulcanization parameters significantly affect the performance of rubber seals and the energy savings of the manufacturing process, which require a relationship between process parameters and vulcanization characteristics. Based on the vulcanization kinetics of rubber seal materials, a transient thermochemical-coupled finite-element model of the vulcanization process was established and solved. Changes in thermal conductivity and specific heat capacity during vulcanization were considered in detail. The effects of operational and structural parameters, such as mold temperature, heating duration, and rubber seal shape, cross-sectional dimensions on vulcanization characteristics were investigated. Finally, feasible suggestions for the vulcanization production of rubber seals are discussed. The study is expected to design parameters and control the vulcanization process of rubber seals accurately.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4293
Author(s):  
Przemysław Poszwa ◽  
Paweł Muszyński ◽  
Krzysztof Mrozek ◽  
Michał Zielinski ◽  
Andrzej Gessner ◽  
...  

The use of selective induction heating of molding surfaces allows for better filling of molding cavities and has a positive effect on the properties of molded products. This is particularly important in the production of parts that include flexible hinges, which are thin plastic layers connecting two or more parts of the product. By using hinges, it is possible to expand the use of injection molding products and their capabilities. They are widely used in the production of parts for the electrical engineering industry and for packaging Fast Moving Consumer Goods (FMCG). The use of hinges also entails specific reductions in wall thickness. Increases in the shear rate can be expected, which can lead to the degradation of polymers and deterioration of mechanical properties of materials. This paper investigates injection molded flexible hinge parts manufactured with selective induction heating to improve their properties. To verify the efficiency of reduction of material degradation due to high shear rates, open/close tests of elastic hinges were performed. The linear relation between the number of cycles the hinges can withstand, mold temperature and injection time was identified, where mold temperature was the more significant factor.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7462
Author(s):  
Natalia Wierzbicka ◽  
Tomasz Sterzyński ◽  
Marek Nowicki

The purpose of studies was to analyse an impact of heterogeneous nucleation of modified isotactic polypropylene (iPP) on its tribological properties. The iPP injection molded samples, produced by mold temperature of 20 and 70 °C, were modified with compositions of two nucleating agents (NA’s), DMDBS creating α-form and mixture of pimelic acid with calcium stearate (PACS) forming β–phase of iPP, with a total content 0.2 wt.% of NA’s. A polymorphic character of iPP, with both, monoclinic (α) and pseudo-hexagonal (β) crystalline structures, depending on the NA’s ratio, was verified. The morphology observation, DSC, hardness and tribological measurements as test in reciprocating motion with “pin on flat” method, were realized, followed by microscopic observation (confocal and SEM) of the friction patch track. It was found that Shore hardness rises along with DMBDS content, independent on mold temperature. The friction coefficient (COF) depends on NA’s content and forming temperature—for upper mold temperature (70 °C), its value is higher and more divergently related to NA’s composition, what is not the case by 20 °C mold temperature. The height of friction scratches and the width of patch tracks due to its plastic deformation, as detected by confocal microscopy, are related to heterogeneous nucleation modified structure of iPP.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4244
Author(s):  
Fang-Yu Fan ◽  
Hsin-Hua Chou ◽  
Wei-Chun Lin ◽  
Chiung-Fang Huang ◽  
Yi Lin ◽  
...  

This study examined the uniformity of illuminance field distributions of light guide plates (LGPs). First, the authors designed microstructural patterns on the surface of an LGP. Then, a mold of the LGP with the optimal microstructural design was fabricated by a photolithography method. Micro-injection molding (μIM) was used to manufacture the molded LGPs. μIM technology can simultaneously manufacture large-sized wedge-shaped LGPs and micro-scale microstructures. Finally, illuminance values of the field distributions of the LGPs with various microstructures were obtained through optical field measurements. This study compared the illuminance field distributions of LGPs with various designs and structures, which included LGPs without and those with microstructure on the primary design and the optimal design. The average illuminance of the LGP with microstructures and the optimal design was roughly 196.1 cd/m2. Its average illuminance was 1.3 times that of the LGP without microstructures. This study also discusses illuminance field distributions of LGPs with microstructures that were influenced by various μIM process parameters. The mold temperature was found to be the most important processing parameter affecting the illuminance field distribution of molded LGPs fabricated by μIM. The molded LGP with microstructures and the optimal design had better uniformity than that with microstructures and the primary design and that without microstructures. The uniformity of the LGP with microstructures and the optimal design was roughly 86.4%. Its uniformity was nearly 1.65 times that of the LGP without microstructures. The optimized design and fabrication of LGPs with microstructure exhibited good uniformity of illuminance field distributions.


2021 ◽  
pp. 339-346
Author(s):  
Jatin Sadarang ◽  
Ramesh Kumar Nayak ◽  
Isham Panigrahi

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4012
Author(s):  
Chris Vanheusden ◽  
Pieter Samyn ◽  
Bart Goderis ◽  
Mouna Hamid ◽  
Naveen Reddy ◽  
...  

Biobased and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. However, improvements in their processing and mechanical properties are necessary. In this work, the influence of melt processing conditions on the mechanical properties and microstructure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is examined using a full factorial design of experiments (DoE) approach. We have found that strict control over processing temperature, mold temperature, screw speed, and cooling time leads to highly increased elongation at break values, mainly under influence of higher mold temperatures at 80 °C. Increased elongation of the moldings is attributed to relaxation and decreased orientation of the polymer chains together with a homogeneous microstructure at slower cooling rates. Based on the statistically substantiated models to determine the optimal processing conditions and their effects on microstructure variation and mechanical properties of PHBHHx samples, we conclude that optimizing the processing of this biopolymer can improve the applicability of the material and extend its scope in the realm of flexible packaging applications.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3874
Author(s):  
Yan-Mao Huang ◽  
Wen-Ren Jong ◽  
Shia-Chung Chen

This study addresses some issues regarding the problems of applying CAE to the injection molding production process where quite complex factors inhibit its effective utilization. In this study, an artificial neural network, namely a backpropagation neural network (BPNN), is utilized to render results predictions for the injection molding process. By inputting the plastic temperature, mold temperature, injection speed, holding pressure, and holding time in the molding parameters, these five results are more accurately predicted: EOF pressure, maximum cooling time, warpage along the Z-axis, shrinkage along the X-axis, and shrinkage along the Y-axis. This study first uses CAE analysis data as training data and reduces the error value to less than 5% through the Taguchi method and the random shuffle method, which we introduce herein, and then successfully transfers the network, which CAE data analysis has predicted to the actual machine for verification with the use of transfer learning. This study uses a backpropagation neural network (BPNN) to train a dedicated prediction network using different, large amounts of data for training the network, which has proved fast and can predict results accurately using our optimized model.


2021 ◽  
Vol 13 (11) ◽  
pp. 168781402110610
Author(s):  
Dyi-Cheng Chen ◽  
Yu-Kuan Yeh

This study employed different molding parameter combinations, the Taguchi method, ANOVA, and response surface methodology to perform experiments. Finite element analysis was executed to find the optimum molding parameters and increase the depth of drawing molding. The material is aluminum alloy 6016, and the servo press was adopted for the experiments. The factors influencing the drawing molding including punch fillet radius, die fillet radius, die clearance, molding curve, and mold temperature were determined. To find the optimum combination of parameters and to design 16 experimental combinations, the L16 orthogonal array of the Taguchi method was employed. According to the experimental results, the optimum parameters include punch fillet radius of 8.5 mm, die fillet radius of 8.5 mm, clearance of 1.5 t, curve 3, and the mold temperature of 20°C. Using the optimum parameter combination the molding depth could be increased greatly and the thickness ratio could be improved.


Seikei-Kakou ◽  
2021 ◽  
Vol 33 (11) ◽  
pp. 394-396
Author(s):  
Jun Watanabe ◽  
Hisanori Takahashi ◽  
Takashi Natori ◽  
Tadayoshi Takahara

Sign in / Sign up

Export Citation Format

Share Document