Research of session initial protocol security mechanism on public key technique

2011 ◽  
Vol 16 (5) ◽  
pp. 419-422 ◽  
Author(s):  
Jian Hu ◽  
Yuxiang Li ◽  
Jiuchao Feng
Author(s):  
Daya Sagar Gupta ◽  
G. P. Biswas

In this chapter, a cloud security mechanism is described in which the computation (addition) of messages securely stored on the cloud is possible. Any user encrypts the secret message using the receiver's public key and stores it. Later on, whenever the stored message is required by an authentic user, he retrieves the encrypted message and decrypts it by using his secret key. However, he can also request the cloud for an addition of encrypted messages. The cloud system only computes the requested addition and sends it to the authentic user; it cannot decrypt the stored encrypted messages on its own. This addition of encrypted messages should be the same as the encryption of the addition of original messages. In this chapter, the authors propose a homomorphic encryption technique in which the above-discussed scenario is possible. The cloud securely computes the addition of the encrypted messages which is ultimately the encryption of the addition of the original messages. The security of the proposed encryption technique depends on the hardness of elliptic curve hard problems.


2017 ◽  
Vol 66 (4) ◽  
pp. 95-110
Author(s):  
Joanna Dmitruk ◽  
Michał Glet

PDF Encryption is a content security mechanism developed and used by Adobe in their products. In this paper, we have checked a theoretical security level of a variant that uses public key infrastructure and X.509 certificates. We have described a basis of this mechanism and we have performed a simple security analysis. Then, we have showed possible tweaks and security improvements. At the end, we have given some recommendations that can improve security of a content secured with PDF Encryption based on X.509 certificates. Keywords: DRM, cryptography, security level, PDF Encryption, Adobe, X.509


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1718
Author(s):  
Chengzhi Jiang ◽  
Chuanfeng Huang ◽  
Qiwei Huang ◽  
Jian Shi

The multi-source data collected by the power Internet of Things (IoT) provide the data foundation for the power big data analysis. Due to the limited computational capability and large amount of data collection terminals in power IoT, the traditional security mechanism has to be adapted to such an environment. In order to ensure the security of multi-source data in the power monitoring networks, a security system for multi-source big data in power monitoring networks based on the adaptive combined public key algorithm and an identity-based public key authentication protocol is proposed. Based on elliptic curve cryptography and combined public key authentication, the mapping value of user identification information is used to combine the information in a public and private key factor matrix to obtain the corresponding user key pair. The adaptive key fragment and combination method are designed so that the keys are generated while the status of terminals and key generation service is sensed. An identification-based public key authentication protocol is proposed for the power monitoring system where the authentication process is described step by step. Experiments are established to validate the efficiency and effectiveness of the proposed system. The results show that the proposed model demonstrates satisfying performance in key update rate, key generation quantity, data authentication time, and data security. Finally, the proposed model is experimentally implemented in a substation power IoT environment where the application architecture and security mechanism are described. The security evaluation of the experimental implementation shows that the proposed model can resist a series of attacks such as counterfeiting terminal, data eavesdropping, and tampering.


Informatica ◽  
2012 ◽  
Vol 23 (4) ◽  
pp. 537-562 ◽  
Author(s):  
Ting-Yi Chang ◽  
Min-Shiang Hwang ◽  
Wei-Pang Yang

Author(s):  
Yasuhiko IKEMATSU ◽  
Dung Hoang DUONG ◽  
Albrecht PETZOLDT ◽  
Tsuyoshi TAKAGI

Sign in / Sign up

Export Citation Format

Share Document