A critical fractional choquard problem involving a singular nonlinearity and a radon measure

Author(s):  
Akasmika Panda ◽  
Debajyoti Choudhuri ◽  
Kamel Saoudi
2021 ◽  
Vol 21 (2) ◽  
pp. 261-280
Author(s):  
Marie-Françoise Bidaut-Véron ◽  
Marta Garcia-Huidobro ◽  
Laurent Véron

Abstract In the present paper, we study the existence of nonnegative solutions to the Dirichlet problem ℒ p , q M ⁢ u := - Δ ⁢ u + u p - M ⁢ | ∇ ⁡ u | q = μ {{\mathcal{L}}^{{M}}_{p,q}u:=-\Delta u+u^{p}-M|\nabla u|^{q}=\mu} in a domain Ω ⊂ ℝ N {\Omega\subset\mathbb{R}^{N}} where μ is a nonnegative Radon measure, when p > 1 {p>1} , q > 1 {q>1} and M ≥ 0 {M\geq 0} . We also give conditions under which nonnegative solutions of ℒ p , q M ⁢ u = 0 {{\mathcal{L}}^{{M}}_{p,q}u=0} in Ω ∖ K {\Omega\setminus K} , where K is a compact subset of Ω, can be extended as a solution of the same equation in Ω.


Author(s):  
Danka Lučić ◽  
Enrico Pasqualetto ◽  
Tapio Rajala

AbstractIn the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanqin Zeng ◽  
Yu Gao ◽  
Xiaoping Xue

<p style='text-indent:20px;'>In this paper, we study the generalized modified Camassa-Holm (gmCH) equation via characteristics. We first change the gmCH equation for unknowns <inline-formula><tex-math id="M1">\begin{document}$ (u,m) $\end{document}</tex-math></inline-formula> into its Lagrangian dynamics for characteristics <inline-formula><tex-math id="M2">\begin{document}$ X(\xi,t) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \xi\in\mathbb{R} $\end{document}</tex-math></inline-formula> is the Lagrangian label. When <inline-formula><tex-math id="M4">\begin{document}$ X_\xi(\xi,t)&gt;0 $\end{document}</tex-math></inline-formula>, we use the solutions to the Lagrangian dynamics to recover the classical solutions with <inline-formula><tex-math id="M5">\begin{document}$ m(\cdot,t)\in C_0^k(\mathbb{R}) $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M6">\begin{document}$ k\in\mathbb{N},\; \; k\geq1 $\end{document}</tex-math></inline-formula>) to the gmCH equation. The classical solutions <inline-formula><tex-math id="M7">\begin{document}$ (u,m) $\end{document}</tex-math></inline-formula> to the gmCH equation will blow up if <inline-formula><tex-math id="M8">\begin{document}$ \inf_{\xi\in\mathbb{R}}X_\xi(\cdot,T_{\max}) = 0 $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ T_{\max}&gt;0 $\end{document}</tex-math></inline-formula>. After the blow-up time <inline-formula><tex-math id="M10">\begin{document}$ T_{\max} $\end{document}</tex-math></inline-formula>, we use a double mollification method to mollify the Lagrangian dynamics and construct global weak solutions (with <inline-formula><tex-math id="M11">\begin{document}$ m $\end{document}</tex-math></inline-formula> in space-time Radon measure space) to the gmCH equation by some space-time BV compactness arguments.</p>


2020 ◽  
Vol 40 (6) ◽  
pp. 3143-3169
Author(s):  
Michiel Bertsch ◽  
◽  
Flavia Smarrazzo ◽  
Andrea Terracina ◽  
Alberto Tesei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document