scholarly journals Global weak solutions to the generalized mCH equation via characteristics

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Fanqin Zeng ◽  
Yu Gao ◽  
Xiaoping Xue

<p style='text-indent:20px;'>In this paper, we study the generalized modified Camassa-Holm (gmCH) equation via characteristics. We first change the gmCH equation for unknowns <inline-formula><tex-math id="M1">\begin{document}$ (u,m) $\end{document}</tex-math></inline-formula> into its Lagrangian dynamics for characteristics <inline-formula><tex-math id="M2">\begin{document}$ X(\xi,t) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ \xi\in\mathbb{R} $\end{document}</tex-math></inline-formula> is the Lagrangian label. When <inline-formula><tex-math id="M4">\begin{document}$ X_\xi(\xi,t)&gt;0 $\end{document}</tex-math></inline-formula>, we use the solutions to the Lagrangian dynamics to recover the classical solutions with <inline-formula><tex-math id="M5">\begin{document}$ m(\cdot,t)\in C_0^k(\mathbb{R}) $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M6">\begin{document}$ k\in\mathbb{N},\; \; k\geq1 $\end{document}</tex-math></inline-formula>) to the gmCH equation. The classical solutions <inline-formula><tex-math id="M7">\begin{document}$ (u,m) $\end{document}</tex-math></inline-formula> to the gmCH equation will blow up if <inline-formula><tex-math id="M8">\begin{document}$ \inf_{\xi\in\mathbb{R}}X_\xi(\cdot,T_{\max}) = 0 $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ T_{\max}&gt;0 $\end{document}</tex-math></inline-formula>. After the blow-up time <inline-formula><tex-math id="M10">\begin{document}$ T_{\max} $\end{document}</tex-math></inline-formula>, we use a double mollification method to mollify the Lagrangian dynamics and construct global weak solutions (with <inline-formula><tex-math id="M11">\begin{document}$ m $\end{document}</tex-math></inline-formula> in space-time Radon measure space) to the gmCH equation by some space-time BV compactness arguments.</p>

2006 ◽  
Vol 241 (2) ◽  
pp. 457-485 ◽  
Author(s):  
Joachim Escher ◽  
Yue Liu ◽  
Zhaoyang Yin

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Kangqun Zhang

We focus on the nonexistence of global weak solutions of nonlinear Keldysh type equation with one derivative term. In terms of the analysis of the first Fourier coefficient, we show the solution of singular initial value problem and singular initial-boundary value problem of the nonlinear equation with positive initial data blow-up in some finite time interval.


2017 ◽  
Vol 14 (01) ◽  
pp. 135-156 ◽  
Author(s):  
João-Paulo Dias ◽  
Filipe Oliveira

We study a quasilinear nonlocal Benney system and establish the existence and uniqueness of strong local in time solutions to the corresponding Cauchy problem. We also show, under certain conditions, the blow-up of such solutions in finite time. Furthermore, we prove the existence of global weak solutions and exhibit bound-state solutions to this system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huafei Di ◽  
Zefang Song

This paper is devoted to the initial and boundary value problems for a class of nonlinear metaparabolic equations u t − β u x x − k u x x t + γ u x x x x = f u x x . At low initial energy level ( J u 0 < d ), we not only prove the existence of global weak solutions for these problems by the combination of the Galerkin approximation and potential well methods but also obtain the finite time blow-up result by adopting the potential well and improved concavity skills. Finally, we also discussed the finite time blow-up phenomenon for certain solutions of these problems with high initial energy.


1996 ◽  
Vol 19 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Marcondes Rodrigues Clark

In this paper, we study the existence of global weak solutions for the equationk2(x)u″+k1(x)u′+A(t)u+|u|ρu=f       (I)in the non-cylinder domainQinRn+1;k1andk2are bounded real functions,A(t)is the symmetric operatorA(t)=−∑i,j=1n∂∂xj(aij(x,t)∂∂xi)           whereaijandfare real functions given inQ. For the proof of existence of global weak solutions we use the Faedo-Galerkin method, compactness arguments and penalization.


Sign in / Sign up

Export Citation Format

Share Document