Renal Sympathetic Nerve Ablation: The New Frontier in the Treatment of Hypertension

2010 ◽  
Vol 12 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Markus P. Schlaich ◽  
Henry Krum ◽  
Paul A. Sobotka
2002 ◽  
Vol 97 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Akira Niijima ◽  
Tomoko Okui ◽  
Yasuo Matsumura ◽  
Toshihiko Yamano ◽  
Nobuo Tsuruoka ◽  
...  

1998 ◽  
Vol 274 (1) ◽  
pp. R97-R103 ◽  
Author(s):  
Yasuhiro Nishida ◽  
Isao Sugimoto ◽  
Hironobu Morita ◽  
Hiroshi Murakami ◽  
Hiroshi Hosomi ◽  
...  

Sodium ions absorbed from the intestine are postulated to act on the liver to reflexly suppress renal sympathetic nerve activity (RSNA), resulting in inhibition of sodium reabsorption in the kidney. To test the hypothesis that the renal sympathoinhibitory response to portal venous NaCl infusion involves an action of arginine vasopressin (AVP) at the area postrema, we examined the effects of portal venous infusion of hypertonic NaCl on RSNA before and after lesioning of the area postrema (APL) or after pretreatment with an AVP V1 receptor antagonist (AVPX). Rabbits were chronically instrumented with portal and femoral venous catheters, femoral arterial catheters, and renal nerve electrodes. Portal venous infusion of 9.0% NaCl (0.02, 0.05, 0.10, and 0.15 ml ⋅ kg−1 ⋅ min−1of 9.0% NaCl for 10 min) produced a dose-dependent suppression of RSNA (−12 ± 3, −34 ± 3, −62 ± 5, and 80 ± 2%, respectively) that was greater than that produced by femoral vein infusion of 9.0% NaCl (2 ± 3, −3 ± 2, −12 ± 4, and −33 ± 3%, respectively). The suppression of RSNA produced by portal vein infusion of 9.0% NaCl was partially reversed by pretreatment with AVPX (−9 ± 3, −20 ± 3, −41 ± 4, and −55 ± 4%, respectively) and by APL (−11 ± 2, −25 ± 2, −49 ± 3, and −59 ± 6%, respectively). There were no significant differences between the effects of AVPX and APL, and the effect of APL was not augmented by AVPX. These results indicate that the suppression of RSNA due to portal venous infusion of 9.0% NaCl involves an action of AVP via the area postrema.


2012 ◽  
Vol 35 (5) ◽  
pp. 355-364 ◽  
Author(s):  
Josne C. Paterno ◽  
Cássia T. Bergamaschi ◽  
Ruy R. Campos ◽  
Elisa M.S. Higa ◽  
Maria Fernanda Soares ◽  
...  

1998 ◽  
Vol 274 (2) ◽  
pp. H636-H641 ◽  
Author(s):  
Gerald F. Dibona ◽  
Susan Y. Jones ◽  
Linda L. Sawin

In rats with congestive heart failure, type 1 angiotensin II receptor antagonist treatment (losartan) decreases basal renal sympathetic nerve activity and improves arterial baroreflex regulation of renal sympathetic nerve activity. This investigation examined the effect of losartan on cardiac baroreflex regulation of renal sympathetic nerve activity and renal sodium handling in rats with congestive heart failure. Losartan treatment decreased arterial pressure from 120 ± 3 to 93 ± 5 mmHg and increased the afferent (from 0.95 ± 0.21 to 2.22 ± 0.42% Δafferent vagal nerve activity/mmHg mean right atrial pressure, P < 0.05) and overall gain (from −1.14 ± 0.19 to −4.20 ± 0.39% Δrenal sympathetic nerve activity/mmHg mean right atrial pressure, P < 0.05) of the cardiac baroreflex. During isotonic saline volume loading, urinary sodium excretion increased from 2.4 ± 0.8 to 10.5 ± 1.3 μeq/min in vehicle-treated rats (excretion of 52 ± 3% of the load) and from 3.0 ± 1.0 to 15.1 ± 1.8 μeq/min in losartan-treated rats (excretion of 65 ± 4% of the load, P < 0.05). When rats were changed from a low- to a high-sodium diet, cumulative sodium balance over 5 days was 7.8 ± 0.6 meq in vehicle-treated rats and 4.2 ± 0.4 meq in losartan-treated rats ( P < 0.05). In congestive heart failure, losartan treatment improved cardiac baroreflex regulation of renal sympathetic nerve activity, which was associated with improved ability to excrete acute and chronic sodium loads.


Cardiology ◽  
2015 ◽  
Vol 131 (3) ◽  
pp. 189-196 ◽  
Author(s):  
Minfu Bai ◽  
Chaokuan Yang ◽  
Chuanyu Gao ◽  
Xianpei Wang ◽  
Hongzhi Liu ◽  
...  

Objectives: This study was designed to observe the efficacy and safety of renal denervation from the inside and outside of renal arteries. Methods: Fourteen beagles were randomly divided into a control group (n = 4) and treatment group (n = 10). One renal artery in every beagle of the treatment group was randomly assigned to an intimal group (10 renal arteries) which underwent percutaneous renal denervation from the inside, and another renal artery was assigned to an adventitial group (10 renal arteries) which underwent renal denervation from the outside by laparotomy. Results: Compared with the intimal group, the renal norepinephrine (NE) concentration in the adventitial group had significantly decreased (p = 0.003) at 3 months postsurgery. Renal artery HE staining showed that the perineurium from the adventitial group appeared thickened. Western blotting showed that renal tissue tyrosine hydroxylase (TH) protein expression in the adventitial group was significantly lower than that in the intimal group (p < 0.01) at 3 months postsurgery. There was a renal artery stenosis and a renal atrophy in the intimal group after 1 month of follow-up. Conclusion: The inhibitory effect on renal sympathetic nerve activity was more effective in the adventitial group than the intimal group, and renal denervation in the former group was safe.


Sign in / Sign up

Export Citation Format

Share Document