Effect of Perturbations in the Coriolis and Centrifugal Forces on the Stability of L 4 in the Relativistic R3BP

2014 ◽  
Vol 35 (4) ◽  
pp. 701-713 ◽  
Author(s):  
Jagadish Singh ◽  
Nakone Bello
2016 ◽  
Vol 4 (2) ◽  
pp. 76
Author(s):  
Bello Nakone ◽  
Jagadish Singh

In the present paper, we endeavor to study the stability of triangular points under the influence of small perturbations in the Coriolis and centrifugal forces, together with the triaxiality of the bigger primary in the framework of the relativistic R3BP. It is observed that the locations of these points are affected by the relativistic factor, triaxiality and a small perturbation in the centrifugal force, but are unaffected by that of the Coriolis force. It is also seen that for these points the range of stability region increases or decreases according as equation (14) without is greater or less than zero.


2002 ◽  
Vol 457 ◽  
pp. 157-180 ◽  
Author(s):  
TURGUT SARPKAYA

The instabilities in a sinusoidally oscillating non-separated flow over smooth circular cylinders in the range of Keulegan–Carpenter numbers, K, from about 0.02 to 1 and Stokes numbers, β, from about 103 to 1.4 × 106 have been observed from inception to chaos using several high-speed imagers and laser-induced fluorescence. The instabilities ranged from small quasi-coherent structures, as in Stokes flow over a flat wall (Sarpkaya 1993), to three-dimensional spanwise perturbations because of the centrifugal forces induced by the curvature of the boundary layer (Taylor–Görtler instability). These gave rise to streamwise-oriented counter-rotating vortices or mushroom-shaped coherent structures as K approached the Kh values theoretically predicted by Hall (1984). Further increases in K for a given β led first to complex interactions between the coherent structures and then to chaotic motion. The mapping of the observations led to the delineation of four states of flow in the (K, β)-plane: stable, marginal, unstable, and chaotic.


Sign in / Sign up

Export Citation Format

Share Document