squeezing flow
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 91)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Hammad Alotaibi

Abstract This study discusses the entropy generation analysis of electro-magneto hydrodynamics (EMHD) hybrid nanofluid copper oxide-aluminum oxide/ethylene glycol (CuO-Al2O3/C2H6O2) flow amidst two rotating disks in a porous media having variable thermophysical features. The addition of the surface catalyzed to the homogeneous-heterogeneous reactions shorten the reaction time that may be taken as a novel aspect of the undertaken EMHD hybrid nanofluid squeezing flow. The inimitability of the assumed model is supplemented by considering the simultaneous effects of the variable thermal conductivity and viscosity. To simplify the governing flow model, suitable conversions are used to accurately translate the obtained partial differential equations to ordinary differential equations. The flow and energy transfer characteristics are computed and sketched graphically by using the Keller box scheme. The outcomes reveal that the drag force in radial and tangential directions depict the opposing trend for variable viscosity parameter. Furthermore, the normal magnetic and transverse electric fields play an essential role in the alignment of the nanoparticles throughout the flow field. The validation of the envisaged model is also a part of this study.


Author(s):  
A. Zeeshan ◽  
M. B. Arain ◽  
M. M. Bhatti ◽  
F. Alzahrani ◽  
O. Anwar Bég

Modern biomedical and tribological systems are increasingly deploying combinations of nanofluids and bioconvecting microorganisms which enable improved control of thermal management. Motivated by these developments, in this study, a new mathematical model is developed for the combined nanofluid bioconvection axisymmetric squeezing flow between rotating circular plates (an important configuration in, for example, rotating bioreactors and lubrication systems). The Buongiorno two-component nanoscale model is deployed, and swimming gyrotactic microorganisms are considered which do not interact with the nanoparticles. Thermal radiation is also included, and a Rosseland diffusion flux approximation is utilized. Appropriate similarity transformations are implemented to transform the nonlinear, coupled partial differential conservation equations for mass, momentum, energy, nanoparticle species and motile microorganism species under suitable boundary conditions from a cylindrical coordinate system into a dimensionless nonlinear ordinary differential boundary value problem. An efficient scheme known as differential transform method (DTM) combined with Padé-approximations is then applied to solve the emerging nonlinear similarity equations. The impact of different non-dimensional parameters i.e. squeezing Reynolds number, rotational Reynolds number, Prandtl number, thermophoresis parameter, Brownian dynamics parameter, thermal radiation parameter, Schmidt number, bioconvection number and Péclet number on velocity, temperature, nanoparticle concentration and motile gyrotactic microorganism density number distributions is computed and visualized graphically. The torque effects on both plates, i.e. the lower and the upper plate, are also determined. From the graphical results, it is seen that momentum in the squeezing regime is suppressed clearly as the upper disk approaches the lower disk. This inhibits the axial flow and produces axial flow retardation. Similarly, by enhancing the value of squeezing Reynolds number, the tangential velocity distribution also decreases. More rigorous squeezing clearly therefore also inhibits tangential momentum development in the regime and leads to tangential flow deceleration. Tables are also provided for multiple values of flow parameters. The numerical values obtained by DTM-Padé computation show very good agreement with shooting quadrature. DTM-Padé is shown to be a precise and stable semi-numerical methodology for studying rotating multi-physical flow problems. Radiative heat transfer has an important influence on the transport characteristics. When radiation is neglected, different results are obtained. It is important therefore to include radiative flux in models of rotating bioreactors and squeezing lubrication dual disk damper technologies since high temperatures associated with radiative flux can impact significantly on combined nanofluid bioconvection which enables more accurate prediction of actual thermofluidic characteristics. Corrosion and surface degradation effects may therefore be mitigated in designs.


2021 ◽  
Author(s):  
Magdalena Osial ◽  
Michał Nowicki ◽  
Ewa Klejman ◽  
Leszek Frąś

AbstractMagnetorheological (MR) fluids are classified as smart materials whose viscoplastic characteristics change under the magnetic field. They are widely applied for dynamic energy dissipation due to their rapid thickening under the external magnetic field. In this work, the core–shell suspension of superparamagnetic iron oxide-based nanoparticles was synthesized and dispersed in silicone oil. Much effort has been made to prepare suspension meeting requirements of MR fluid. The experimental squeezing flow response was studied using a modified split Hopkinson pressure bar (SHPB) with various shear rates. Tests with modified SHPB show that MR fluid rapidly responds to the compression thickening and forming chain-like structures. MR fluid dissipates the energy generated during compression stress tests. This study presents a simple and cost-effective synthesis way suitable for MR fluid formation for its dynamic energy dissipation application.


2021 ◽  
Vol 28 (11) ◽  
pp. 3368-3380
Author(s):  
T. Hayat ◽  
M. Waqar Ahmad ◽  
S. A. Shehzad ◽  
A. Alsaedi

2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110408
Author(s):  
Imran Khan ◽  
Hakeem Ullah ◽  
Mehreen Fiza ◽  
Saeed Islam ◽  
Asif Zahoor Raja ◽  
...  

In this study, a new computing model by developing the strength of feed-forward neural networks with Levenberg-Marquardt Method (NN-BLMM) based backpropagation is used to find the solution of nonlinear system obtained from the governing equations of unsteady squeezing flow of Heat and Mass transfer behaviour between parallel plates. The governing partial differential equations (PDEs) for unsteady squeezing flow of Heat and Mass transfer of viscous fluid are converting into ordinary differential equations (ODEs) with the help of a similarity transformation. A dataset for the proposed NN-BLMM is generated for different scenarios of the proposed model by variation of various embedding parameters squeeze Sq, Prandtl number Pr, Eckert number Ec, Schmidt number Sc and chemical-reaction-parameter [Formula: see text]. Physical interpretation to various embedding parameters is assigned through graphs for squeeze Sq, Prandtl Pr, Eckert Ec, Schmidt Sc and chemical-reaction-parameter [Formula: see text]. The processing of NN-BLMM training (T.R), Testing (T.S) and validation (V.L) is employed for various scenarios to compare the solutions with the reference results. For the fluidic system convergence analysis based on mean square error (MSE), error histogram (E.H) and regression (R.G) plots is considered for the proposed computing infrastructures performance in term of NN-BLMM. The results based on proposed and reference results match in term of convergence up to 10-02 to 10-08 proves the validity of NN-BLMS. The Optimal Homotopy Asymptotic Method (OHAM) is also used for comparison and to validate the results of NN-BLMM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Mabrook Almalki ◽  
Eman Salem Alaidarous ◽  
Dalal Adnan Maturi ◽  
Muhammad Asif Zahoor Raja ◽  
Muhammad Shoaib

AbstractIn this study, the unsteady squeezing flow between circular parallel plates (USF-CPP) is investigated through the intelligent computing paradigm of Levenberg–Marquard backpropagation neural networks (LMBNN). Similarity transformation introduces the fluidic system of the governing partial differential equations into nonlinear ordinary differential equations. A dataset is generated based on squeezing fluid flow system USF-CPP for the LMBNN through the Runge–Kutta method by the suitable variations of Reynolds number and volume flow rate. To attain approximation solutions for USF-CPP to different scenarios and cases of LMBNN, the operations of training, testing, and validation are prepared and then the outcomes are compared with the reference data set to ensure the suggested model’s accuracy. The output of LMBNN is discussed by the mean square error, dynamics of state transition, analysis of error histograms, and regression illustrations.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2309
Author(s):  
Wajid Ullah Jan ◽  
Muhammad Farooq ◽  
Rehan Ali Shah ◽  
Aamir Khan ◽  
M S Zobaer ◽  
...  

This paper explores the time dependent squeezing flow of a viscous fluid between parallel plates with internal heat generation and homogeneous/heterogeneous reactions. The motive of the present effort is to upgrade the heat transformation rate for engineering and industrial purpose with the rate of chemical reaction. For this purpose the equations for the conservation of mass, momentum, energy and homogeneous/heterogeneous reactions are transformed to a system of coupled equations using the similarity transformation. According to HAM, with the proper starting assumptions and other factors, a similarity solution may be found. On the way to verifying the validity and correctness of HAM findings, we compare the HAM solution with numerical solver programme BVP4c to see whether it matches up. The results of a parametric inquiry are summarized and presented with the use of graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mubashir Qayyum ◽  
Imbsat Oscar

Squeezing flow has many applications in different fields including chemical, mechanical, and electrical engineering as these flows can be observed in many hydrodynamical tools and machines. Due to importance of squeezing flow, in this paper, an unsteady squeezing flow of a viscous magnetohydrodynamic (MHD) fluid which is passing through porous medium has been modeled and analyzed with and without slip effects at the boundaries. The least squares homotopy perturbation method (LSHPM) has been proposed to determine the solutions of nonlinear boundary value problems. To check the validity and convergence of the proposed scheme (LSHPM), the modeled problems are also solved with the Fehlberg–Runge–Kutta method (RKF45) and homotopy perturbation method (HPM) and residual errors are compared with LSHPM. To the best of the authors’ knowledge, the current problems have not been attempted before with LSHPM. Moreover, the impact of different fluid parameters on the velocity profile has been examined graphically in slip and no-slip cases. Analysis shows that the Reynolds number, MHD parameter, and porosity parameter have opposite effects in case of slip and no slip at the boundaries. It is also observed that nonzero slip parameter accelerates the velocity profile near the boundaries. Analysis also reveals that LSHPM provides better results in terms of accuracy as compared to HPM and RKF45 and can be effectively used for the fluid flow problems.


Sign in / Sign up

Export Citation Format

Share Document