Experiments on the stability of sinusoidal flow over a circular cylinder

2002 ◽  
Vol 457 ◽  
pp. 157-180 ◽  
Author(s):  
TURGUT SARPKAYA

The instabilities in a sinusoidally oscillating non-separated flow over smooth circular cylinders in the range of Keulegan–Carpenter numbers, K, from about 0.02 to 1 and Stokes numbers, β, from about 103 to 1.4 × 106 have been observed from inception to chaos using several high-speed imagers and laser-induced fluorescence. The instabilities ranged from small quasi-coherent structures, as in Stokes flow over a flat wall (Sarpkaya 1993), to three-dimensional spanwise perturbations because of the centrifugal forces induced by the curvature of the boundary layer (Taylor–Görtler instability). These gave rise to streamwise-oriented counter-rotating vortices or mushroom-shaped coherent structures as K approached the Kh values theoretically predicted by Hall (1984). Further increases in K for a given β led first to complex interactions between the coherent structures and then to chaotic motion. The mapping of the observations led to the delineation of four states of flow in the (K, β)-plane: stable, marginal, unstable, and chaotic.

Robotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 96
Author(s):  
Quang Huan Luong ◽  
Jeremy Jong ◽  
Yusuke Sugahara ◽  
Daisuke Matsuura ◽  
Yukio Takeda

A new generation electric high-speed train called Aerotrain has levitation wings and levitates under Wing-in-Ground (WIG) effect along a U-shaped guideway. The previous study found that lacking knowledge of the design makes the prototype unable to regain stability when losing control. In this paper, the nonlinear three-dimensional dynamic model of the Aerotrain based on the rigid body model has been developed to investigate the relationship between the vehicle body design and its stability. Based on the dynamic model, this paper considered an Aerotrain with a horizontal tail and a vertical tail. To evaluate the stability, the location and area of these tails were parameterized. The effects of these parameters on the longitudinal and directional stability have been investigated to show that: the horizontal tail gives its best performance if the tail area is a function of the tail location; the larger vertical tail area and (or) the farther vertical tail location will give better directional stability. As for the lateral stability, a dihedral front levitation wing design was investigated. This design did not show its effectiveness, therefore a control system is needed. The obtained results are useful for the optimization studies on Aerotrain design as well as developing experimental prototypes.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms a in low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short lengthscale disturbance known as a ‘spike’, and the second with a longer lengthscale disturbance known as a ‘modal oscillation’. In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented which relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: long lengthscale disturbances are related to a two-dimensional instability of the whole compression system, while short lengthscale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed which explains the type of stall inception pattern observed in a particular compressor. Measurements from a single stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


2010 ◽  
Vol 443 ◽  
pp. 302-307
Author(s):  
Jun Zhao ◽  
Xiao Feng Zhang ◽  
Han Bing Luo

By taking into account the regenerative chatter vibration, a nonlinear dynamics model for high speed ball-end milling is proposed. The effect of dynamic components of milling forces on chatter is analyzed. A method to predict the stability limits of high speed ball-end milling process is proposed and the stability lobes diagram is simulated. The comparison of experimental milling forces with the simulation results indicates the high accuracy of the model and the effectiveness of the simulation algorithms. The proposed method provides a theoretical instruction for parameters selection and optimization in milling processing.


1969 ◽  
Vol 91 (4) ◽  
pp. 1105-1113 ◽  
Author(s):  
E. J. Gunter ◽  
P. R. Trumpler

This paper evaluates the stability of the single mass rotor with internal friction on damped, anisotropic supports. The paper shows under what conditions the rotor stability may be improved by an undamped support with anisotropic stiffness properties. A three dimensional model is presented to show the influence of rotor and support stiffness characteristics on stability. Curves are also presented on how support damping may also improve or even reduce rotor stability. An analog computer solution of the governing equations of motion is presented showing the shaft transient motion for various speed ranges, and also plots of the rotor steady state motion are given for various speeds up to and including the stability threshold. The analysis is used to explain many of the experimental observations of B. L. Newkirk concerning stability due to internal rotor friction.


2012 ◽  
Vol 695 ◽  
pp. 390-404 ◽  
Author(s):  
Daniel Lanzerstorfer ◽  
Hendrik C. Kuhlmann

AbstractThe global, temporal stability of the two-dimensional, incompressible flow over a forward-facing step in a plane channel is investigated numerically. The geometry is varied systematically covering constriction ratios (step-to-inlet height) from 0.23 to 0.965. A three-dimensional linear stability analysis shows that the stability boundary is a smooth continuous function of the constriction ratio. If the critical Reynolds and wavenumbers are scaled appropriately, they approach a linear asymptotic behaviour for large step heights. The critical mode is found to be stationary and confined to the region of separated flow downstream of the step for all constriction ratios. An energy-transfer analysis reveals that the basic flow becomes unstable due to a combined effect involving lift-up and flow deceleration, leading to a critical mode exhibiting steady streaks. Moreover, the receptivity of the flow to initial as well as to structural perturbations is studied by means of an adjoint analysis.


2009 ◽  
Vol 622 ◽  
pp. 1-21 ◽  
Author(s):  
OLIVIER MARQUET ◽  
MATTEO LOMBARDI ◽  
JEAN-MARC CHOMAZ ◽  
DENIS SIPP ◽  
LAURENT JACQUIN

The stability of the recirculation bubble behind a smoothed backward-facing step is numerically computed. Destabilization occurs first through a stationary three-dimensional mode. Analysis of the direct global mode shows that the instability corresponds to a deformation of the recirculation bubble in which streamwise vortices induce low- and high-speed streaks as in the classical lift-up mechanism. Formulation of the adjoint problem and computation of the adjoint global mode show that both the lift-up mechanism associated with the transport of the base flow by the perturbation and the convective non-normality associated with the transport of the perturbation by the base flow explain the properties of the flow. The lift-up non-normality differentiates the direct and adjoint modes by their component: the direct is dominated by the streamwise component and the adjoint by the cross-stream component. The convective non-normality results in a different localization of the direct and adjoint global modes, respectively downstream and upstream. The implications of these properties for the control problem are considered. Passive control, to be most efficient, should modify the flow inside the recirculation bubble where direct and adjoint global modes overlap, whereas active control, by for example blowing and suction at the wall, should be placed just upstream of the separation point where the pressure of the adjoint global mode is maximum.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
James V. Taylor

Abstract When a multistage high-speed compressor is operated away from its design point, extreme incidence is caused in some blade rows. This results in large, localized separations that are three dimensional in nature. In this paper, topological reasoning is used to describe the behavior of these three-dimensional separations. It is shown that two classes of separation exist: one in which the flow progresses from attached to separate in a smooth way and another where there is a discontinuity in the response of the flow topology. It is shown that the global structure of the flow depends on the type of topological response that occurs. When the response is discontinuous, nonaxisymmetric cells of separated blades are formed. When the response is smooth, the resultant separated flow is axisymmetric. The paper is split into two broad sections: The first section presents examples of the two different classes of topological response that can occur in a single blade row, and it also shows how an engineer can achieve a different response by altering the blade design. The second section covers the analysis of a multistage high-speed compressor. The compressor initially presents the discontinuous behavior with rotating cells of separations. It is then redesigned to reduce the severity of the cell behavior or remove it entirely.


Author(s):  
Chunhua Sheng

This paper presents numerical simulations for a high-speed centrifugal compressor using an unstructured Reynolds averaged Naiver-Stokes flow solver U2NCLE. It solves three-dimensional compressible governing equations using an arbitrary Mach number solution algorithm. The stability enhancement for a centrifugal compressor was achieved by injecting air streams into the vaneless region of the diffuser. Numerical prediction of the stabilizing effect of air injection in the centrifugal compressor requires full annulus simulations of the compressor system. This work presents numerical procedures for simulating full annulus centrifugal compressor, including air injection modeling. A sliding technique is employed to handle relative motion grids for impeller and diffuser interactions. Computed results for the centrifugal compressor are analyzed and assessed with the experiment.


2001 ◽  
Vol 38 (3) ◽  
pp. 553-566 ◽  
Author(s):  
C WW Ng ◽  
L M Zhang ◽  
K KS Ho

Many high-rise buildings, bridges, and transmission towers are constructed on steep slopes in Hong Kong and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as those caused by typhoons, earthquakes, and high-speed vehicles. The margin of safety of the slope may decrease as a result of stresses transferred from the piles to the slope. To minimize the transfer of lateral load from the buildings to the shallow depths of the slope, an annulus of compressible material (sleeving) is sometimes formed between the piles and the adjacent soils. In this paper, a three-dimensional analysis is carried out to investigate the effects of unsleeved and sleeved single piles and pile groups on the stability of a cut slope. Mechanisms of load transfer from the piles to the slope are studied. The stability of the slope is evaluated using the strength reduction technique. The evolution of slope failure is examined and the factors of safety for both initiation of instability and global failure of the slope are identified from the numerical analyses. The sleeving technique is found to be capable of significantly reducing the stresses in the shallow depths of the slope in front of the piles, thus improving the local stability of the slope, but offers limited benefit with respect to global stability.Key words: laterally loaded pile and pile group, sleeving, slope stability, three-dimensional analysis, load transfer mechanism, factor of safety.


Sign in / Sign up

Export Citation Format

Share Document