Adaptive control and synchronization of a fractional-order chaotic system

Pramana ◽  
2013 ◽  
Vol 80 (4) ◽  
pp. 583-592 ◽  
Author(s):  
CHUNLAI LI ◽  
YAONAN TONG
Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2018 ◽  
Vol 7 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Hamed Tirandaz

Abstract Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ping Zhou ◽  
Rui Ding

The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document