A comparative study of threshold selection methods for change detection from very high-resolution remote sensing images

Author(s):  
Huaqiao Xing ◽  
Linye Zhu ◽  
Bingyao Chen ◽  
Chang Liu ◽  
Jingge Niu ◽  
...  
2018 ◽  
Vol 10 (9) ◽  
pp. 1381 ◽  
Author(s):  
Tao Lei ◽  
Dinghua Xue ◽  
Zhiyong Lv ◽  
Shuying Li ◽  
Yanning Zhang ◽  
...  

Change detection approaches based on image segmentation are often used for landslide mapping (LM) from very high-resolution (VHR) remote sensing images. However, these approaches usually have two limitations. One is that they are sensitive to thresholds used for image segmentation and require too many parameters. The other one is that the computational complexity of these approaches depends on the image size, and thus they require a long execution time for very high-resolution (VHR) remote sensing images. In this paper, an unsupervised change detection using fast fuzzy c-means clustering (CDFFCM) for LM is proposed. The proposed CDFFCM has two contributions. The first is that we employ a Gaussian pyramid-based fast fuzzy c-means (FCM) clustering algorithm to obtain candidate landslide regions that have a better visual effect due to the utilization of image spatial information. The second is that we use the difference of image structure information instead of grayscale difference to obtain more accurate landslide regions. Three comparative approaches, edge-based level-set (ELSE), region-based level-set (RLSE), and change detection-based Markov random field (CDMRF), and the proposed CDFFCM are evaluated in three true landslide cases in the Lantau area of Hong Kong. The experiments show that the proposed CDFFCM is superior to three comparative approaches in terms of higher accuracy, fewer parameters, and shorter execution time.


2019 ◽  
Vol 8 (4) ◽  
pp. 189 ◽  
Author(s):  
Chi Zhang ◽  
Shiqing Wei ◽  
Shunping Ji ◽  
Meng Lu

The study investigates land use/cover classification and change detection of urban areas from very high resolution (VHR) remote sensing images using deep learning-based methods. Firstly, we introduce a fully Atrous convolutional neural network (FACNN) to learn the land cover classification. In the FACNN an encoder, consisting of full Atrous convolution layers, is proposed for extracting scale robust features from VHR images. Then, a pixel-based change map is produced based on the classification map of current images and an outdated land cover geographical information system (GIS) map. Both polygon-based and object-based change detection accuracy is investigated, where a polygon is the unit of the GIS map and an object consists of those adjacent changed pixels on the pixel-based change map. The test data covers a rapidly developing city of Wuhan (8000 km2), China, consisting of 0.5 m ground resolution aerial images acquired in 2014, and 1 m ground resolution Beijing-2 satellite images in 2017, and their land cover GIS maps. Testing results showed that our FACNN greatly exceeded several recent convolutional neural networks in land cover classification. Second, the object-based change detection could achieve much better results than a pixel-based method, and provide accurate change maps to facilitate manual urban land cover updating.


Sign in / Sign up

Export Citation Format

Share Document