A method for estimating the probability of glacial lake outburst floods based on logistic regression and geodetector: a case study of the Himalayan region

Author(s):  
Xiangqi He ◽  
Zhoufeng Wang ◽  
Chengwu Wang ◽  
Shijin Wang ◽  
Shangjie Fan ◽  
...  
Author(s):  
Rayees Ahmed ◽  
Gowhar Farooq Wani ◽  
Syed Towseef Ahmad ◽  
Mehebub Sahana ◽  
Harmeet Singh ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


2010 ◽  
Vol 31 (6) ◽  
pp. 508-527 ◽  
Author(s):  
Peng Cui ◽  
Chao Dang ◽  
Zunlan Cheng ◽  
Kevin M. Scott

Landslides ◽  
2016 ◽  
Vol 13 (6) ◽  
pp. 1461-1477 ◽  
Author(s):  
J. Klimeš ◽  
J. Novotný ◽  
I. Novotná ◽  
B. Jordán de Urries ◽  
V. Vilímek ◽  
...  

Author(s):  
Beverly A. Friesen ◽  
Christopher J. Cole ◽  
David A. Nimick ◽  
Earl M. Wilson ◽  
Mark J. Fahey ◽  
...  

2021 ◽  
Author(s):  
Joanne Wood ◽  
Stephan Harrison ◽  
Ryan Wilson ◽  
Neil Glasser ◽  
John Reynolds ◽  
...  

<p>Climate change is resulting in mass loss and the retreat of glaciers in the Andes, exposing steep valley sides, over-deepened valley bottoms, and creating glacial lakes behind moraine dams. Glacial Lake Outburst Floods (GLOFs) present the biggest risk posed by glacier recession in Peru. Understanding the characteristics of lakes that have failed in the past will provide an aid to identifying those lakes that might fail in the future and narrow down which lakes are of greatest interest for reducing the risks to local vulnerable populations. </p><p>Using a newly created lake inventory for the Peruvian Andes (Wood et al., in review) and a comprehensive GLOF inventory (unpublished) we investigate lakes from which GLOFs have occurred in the past. This is to establish which physical components of the glacial lake systems are common to those lakes that have failed previously and which can be identified remotely, easily and objectively, in order to improve existing methods of hazard assessment.</p>


Sign in / Sign up

Export Citation Format

Share Document