glacial lake outburst flood
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 3)

Geomorphology ◽  
2022 ◽  
Vol 399 ◽  
pp. 108080
Author(s):  
Loic Piret ◽  
Sebastien Bertrand ◽  
Nhut Nguyen ◽  
Jon Hawkings ◽  
Cristian Rodrigo ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ulfat Majeed ◽  
Irfan Rashid ◽  
Nadeem Ahmad Najar ◽  
Nafeeza Gul

Glaciers across the Himalayan arc are showing varying signs of recession. Glaciers in the eastern and western parts of the Himalayan arc are retreating more rapidly as compared to other regions. This differential retreat is often attributed to climatic, topographic, and geologic influences. The glaciers in the Trans-Himalayan region of Ladakh are believed to be relatively stable as compared to other parts of the western Himalaya. The present study ascertained the area changes and frontal retreat of 87 glaciers in the Pangong Region between 1990 and 2019 using satellite data. The geodetic mass changes were also assessed using SRTM and TanDEM-X digital elevation models of 2000 and 2012 respectively. Besides, the glacier outlines were delineated manually and compared with existing regional and global glacier inventories that are available over the region. The GlabTop model was used to simulate the glacier-bed overdeepenings of four glaciers that are associated with a proglacial lake. The study also analyzed the impact of topographic influences and varying debris cover on glacier recession. This analysis indicated deglaciation of 6.7 ± 0.1% (0.23% a−1) from 1990 to 2019 over the Pangong Region with clean-ice glaciers showing a higher retreat (8.4 ± 0.28%) compared to the debris-covered glaciers (5.7 ± 0.14%). However, the overall recession is lower compared to other parts of northwestern Himalayas. The glacier recession showed a positive correlation with mean glacier slope (r = 0.3) and debris cover (r = 0.1) with bigger size glaciers having retreated at a lesser pace compared to smaller ones. This underpins the need for in-situ data about debris thickness to precisely ascertain the role of debris on glacier recession in the Trans-Himalayan Ladakh where debris thickness data is absent. The mean glacier elevation did not indicate any influence on glacier recession. From 2000 to 12, the glaciers lost an ice mass amounting to 0.33 ± 0.05 m we. per year. The formation of four new proglacial lakes, although small (<6 ha), need to be monitored using remote sensing data while the infrastructure development activities should not be permitted given glacial lake outburst flood risk.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Benoit Faucher ◽  
Denis Lacelle ◽  
Nicole Britney Marsh ◽  
Liam Jasperse ◽  
Ian Douglas Clark ◽  
...  

AbstractBenthic ecosystems of perennially ice-covered lakes in Antarctica are highly sensitive to climate-driven changes. Lake Untersee has been in hydrological steady-state for several hundred years with a high pH water column and extremely low levels of dissolved inorganic carbon. Here, we show that glacial lake outburst floods can replenish carbon dioxide-depleted lakes with carbon, enhancing phototrophic activity of the benthic ecosystem. In 2019, a glacial lake outburst flood brought 17.5 million m3 of water to Lake Untersee, the most substantial reported increase for any surface lake in Antarctica. High-resolution grain-size and carbon isotope analyses of microbial mats suggest that glacial lake outburst floods have occurred periodically over the Holocene and help explain the complex patterns of carbon cycling and sequestration observed in the lake. Our findings suggest that periodic flooding events may provide biological stimuli to other carbon dioxide-depleted Antarctic ecosystems and perhaps even icy lakes on early Mars.


2021 ◽  
Vol 13 (16) ◽  
pp. 3114
Author(s):  
Shijin Wang ◽  
Yuande Yang ◽  
Wenyu Gong ◽  
Yanjun Che ◽  
Xinggang Ma ◽  
...  

Glacial lake outburst flood (GLOF) is one of the major natural disasters in the Qinghai-Tibetan Plateau (QTP). On 25 June 2020, the outburst of the Jiwenco Glacial Lake (JGL) in the upper reaches of Nidu river in Jiari County of the QTP reached the downstream Niwu Township on 26 June, causing damage to many bridges, roads, houses, and other infrastructure, and disrupting telecommunications for several days. Based on radar and optical image data, the evolution of the JGL before and after the outburst was analyzed. The results showed that the area and storage capacity of the JGL were 0.58 square kilometers and 0.071 cubic kilometers, respectively, before the outburst (29 May), and only 0.26 square kilometers and 0.017 cubic kilometers remained after the outburst (27 July). The outburst reservoir capacity was as high as 5.4 million cubic meters. The main cause of the JGL outburst was the heavy precipitation process before outburst and the ice/snow/landslides entering the lake was the direct inducement. The outburst flood/debris flow disaster also led to many sections of the river and buildings in Niwu Township at high risk. Therefore, it is urgent to pay more attention to glacial lake outburst floods and other low-probability disasters, and early real-time engineering measures should be taken to minimize their potential impacts.


2021 ◽  
Vol 15 (7) ◽  
pp. 3159-3180
Author(s):  
Guoxiong Zheng ◽  
Martin Mergili ◽  
Adam Emmer ◽  
Simon Allen ◽  
Anming Bao ◽  
...  

Abstract. We analyze and reconstruct a recent glacial lake outburst flood (GLOF) process chain on 26 June 2020, involving the moraine-dammed proglacial lake – Jinwuco (30.356∘ N, 93.631∘ E) in eastern Nyainqentanglha, Tibet, China. Satellite images reveal that from 1965 to 2020, the surface area of Jinwuco has expanded by 0.2 km2 (+56 %) to 0.56 km2 and subsequently decreased to 0.26 km2 (−54 %) after the GLOF. Estimates based on topographic reconstruction and sets of published empirical relationships indicate that the GLOF had a volume of 10 million cubic meters, an average breach time of 0.62 h, and an average peak discharge of 5602 m3/s at the dam. Based on pre- and post-event high-resolution satellite scenes, we identified a large debris landslide originating from western lateral moraine that was most likely triggered by extremely heavy, south-Asian-monsoon-associated rainfall in June 2020. We back-calculate part of the GLOF process chain, using the GIS-based open-source numerical simulation tool r.avaflow. Two scenarios are considered, assuming a debris-landslide-induced impact wave with overtopping and resulting retrogressive erosion of the moraine dam (Scenario A), as well as retrogressive erosion without a major impact wave (Scenario B). Both scenarios are in line with empirically derived ranges of peak discharge and breach time. The breaching process is characterized by a slower onset and a resulting delay in Scenario B compared to Scenario A. Comparison of the simulation results with field evidence points towards Scenario B, with a peak discharge of 4600 m3/s. There were no casualties from this GLOF, but it caused severe destruction of infrastructure (e.g., roads and bridges) and property losses in downstream areas. Given the clear role of continued glacial retreat in destabilizing the adjacent lateral moraine slopes and directly enabling the landslide to deposit into the expanding lake body, the GLOF process chain can be plausibly linked to anthropogenic climate change, while downstream consequences have been enhanced by the development of infrastructure on exposed flood plains. Such process chains could become more frequent under a warmer and wetter future climate, calling for comprehensive and forward-looking risk reduction planning.


2021 ◽  
pp. 1-13
Author(s):  
Caroline Jane Taylor ◽  
Joanne Rachel Carr ◽  
David Robert Rounce

Abstract Supraglacial ponds and ice cliffs can dramatically enhance ablation rates on debris-covered glaciers. Supraglacial ponds can also coalesce, forming moraine-dammed lakes at risk of glacial lake outburst flood (GLOF). Given Bhutanese glaciers have some of the highest ice loss rates in the Himalaya and GLOF vulnerability is high, we seek to advance our understanding of the spatial distribution and evolution of supraglacial ponds and ice cliffs. Here, we use high-resolution (3 m) Planet Labs satellite imagery to provide the first short-term, high-resolution dataset of supraglacial pond and ice cliff evolution for three glaciers along the Bhutan–Tibet border from 2016 to 2018. A total of 5754 ponds and 2088 ice cliffs were identified. Large intra-annual changes were observed, with ponded area changes and drainage events coinciding with the seasonality of the Indian Summer Monsoon. On average, ~19% of the total number of ponds had a coincident ice cliff. Pond spatial distribution was driven by ice-surface velocities, with higher numbers of ponds found in areas of low velocity (<8 m a−1). Our study provides the first detailed, quantitative investigation of supraglacial ponds and ice cliffs in Bhutan, providing a framework for further monitoring in this understudied, yet important, region of the Himalaya.


2021 ◽  
Vol 80 (12) ◽  
Author(s):  
Arshad Ashraf ◽  
Muhammad Bilal Iqbal ◽  
Naveed Mustafa ◽  
Rozina Naz ◽  
Bashir Ahmad

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


Geomorphology ◽  
2021 ◽  
pp. 107783
Author(s):  
Ashim Sattar ◽  
Ajanta Goswami ◽  
Anil V. Kulkarni ◽  
Adam Emmer ◽  
Umesh K. Haritashya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document