scholarly journals Simulation and Assessment of Future Glacial Lake Outburst Floods in the Poiqu River Basin, Central Himalayas

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.

2014 ◽  
Vol 11 (2) ◽  
pp. 2391-2439 ◽  
Author(s):  
A. Emmer ◽  
V. Vilímek

Abstract. This paper presents a new and easily repeatable objective method for assessing the potential hazardousness of glacial lakes within the Peruvian region of Cordillera Blanca (excluding ice-dammed lakes, which do not reach significant volumes in this region). The presented method was designed to meet four basic principles, which we considered as being crucial. These are: (a) principle of regional focus; (b) principle of objectivity; (c) principle of repeatability; and (d) principle of multiple results. Potential hazardousness is assessed based on a combination of decision trees for clarity and numerical calculation for objectivity. A total of seventeen assessed characteristics are used, of which seven have yet to be used in this context before. Also, several ratios and calculations are defined for the first time. We assume that it is not relevant to represent the overall potential hazardousness of a particular lake by one result (number), thus the potential hazardousness is described in the presented method by five separate results (representing five different glacial lake outburst flood scenarios). These are potentials for: (a) dam overtopping resulting from a dynamic slope movement into the lake; (b) dam overtopping following the flood wave originating in a lake situated upstream; (c) dam failure resulting from a dynamic slope movement into the lake; (d) dam failure following the flood wave originating in a lake situated upstream; and (e) dam failure following a heavy earthquake. All of these potentials theoretically range from 0 to 1. The presented method was verified on the basis of assessing the pre-flood conditions of seven lakes which have produced ten glacial lake outburst floods in the past and ten lakes which have not. A comparison of these results showed that the presented method successfully identifies the potentially hazardous lakes.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 538
Author(s):  
Hongyu Duan ◽  
Xiaojun Yao ◽  
Dahong Zhang ◽  
Miaomiao Qi ◽  
Juan Liu

The southeastern Tibetan Plateau, where monsoonal temperate glaciers are most developed, has a huge number of glacial lakes. Based on Landsat Operational Land Imager (OLI) images, 192 glacial lakes with a total area of 45.73 ± 6.18 km2 in 2016 were delineated in the Yi’ong Zangbo River Basin. Glacial lakes with areas of less than 0.1 km2 accounted for 81.77% of the total number, and glacial lakes located above 4500 m elevation comprised 83.33%. Dramatic glacier melting caused by climate warming has occurred, resulting in the formation and expansion of glacial lakes and the increase of potential glacial lake outburst floods (GLOFs) risk. From 1970 to 2016, the total area of glaciers in the basin has decreased by 35.39%, whereas the number and total area of glacial lakes have, respectively, increased by 86 and 1.59 km2. In that time, 110 new glacial lakes emerged, whereas 24 of the original lakes disappeared. The newly formed lakes have a smaller mean area but higher mean elevation than the lakes that disappeared. Based on five indicators, a first-order method was used to identify glacial lakes that pose potential threats. We identified 10 lakes with very high, 7 with high, 31 with medium, and 19 with low GLOF susceptibility, out of 67 moraine-dammed glacial lakes with areas larger than 0.02 km2. Understanding the behavior of glaciers and glacial lakes is a vital aspect of GLOFs disaster management, and the monitoring of glacial lakes should be strengthened.


2015 ◽  
Vol 4 ◽  
pp. 56-67
Author(s):  
Shiva Kant Dube

Geographically, Nepal is situated on the lap of the Himalayas occupying 0.3 percent area of Asia and 0.03 percent of the world. Recently, global climate change has invited enormous environmental hazards and disasters in the Hindu-Kush Himalayan region. Catastrophic floods originating from the outburst of glacial lakes have been recognized as one of the primary natural hazards in Nepal, making downstream areas vulnerable. Frequent severe floodscaused by glacier outburst in the Nepal Himalayas, occur once every three years. Nine potentially dangerous glaciers were identified in the Eastern and Central Himalayas during pre- and post-monsoon seasons. At national and international level, Glacial Lake Outburst Floods (GLOF) in Nepal, are receiving considerable attention. Such floods endanger thousands of people, hundreds of villages and basic infrastructure causing disasters. This paper incorporates a case of flash-flood caused by GLOF and torrential rain in India which can be taken as a lesson to mitigate/minimize massive loss of lives and property in the Nepalese context.DOI: http://dx.doi.org/10.3126/av.v4i0.12360Academic Voices Vol.4 2014: 56-67


2009 ◽  
Vol 50 (53) ◽  
pp. 81-86 ◽  
Author(s):  
Samjwal Ratna Bajracharya ◽  
Pradeep Mool

AbstractRecent climate changes have had a significant impact on the high-mountain glacial environment. Rapid melting of glaciers has resulted in the formation and expansion of moraine-dammed lakes, creating a potential danger from glacial lake outburst floods (GLOFs). Most lakes have formed during the second half of the 20th century. Glaciers in the Mount Everest (Sagamartha) region, Nepal, are retreating at an average rate of 10–59 ma–1. From 1976 to 2000, Lumding and Imja Glaciers retreated 42 and 34 ma–1, respectively, a rate that increased to 74 ma–1 for both glaciers from 2000 to 2007. During the past decade, Himalayan glaciers have generally been shrinking and retreating faster while moraine-dammed lakes have been proliferating. Although the number of lakes above 3500 m a.s.l. has decreased, the overall area of moraine-dammed lakes is increasing. Understanding the behaviour of glaciers and glacial lakes is a vital aspect of GLOF disaster management.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tao Che ◽  
Lin Xiao ◽  
Yuei-An Liou

Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet), in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs) in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.


2021 ◽  
Author(s):  
Qi Wang ◽  
Hongyu Duan ◽  
Na Liu ◽  
Zhishui Du ◽  
Pan Wang ◽  
...  

Abstract Glacial lake outburst floods (GLOFs) are a serious potential threat to the safety of life and property in downstream areas. In this study, moraine-dammed glacial lakes in the Yi’ong Zangbo River basin were recognized based on Landsat ETM+/TM/OLI images in 2000 and 2019. And the GLOFs for the Jionglaco, the largest glacial lake in this basin, was simulated using the one-dimensional hydrodynamic model. The results show that the total number and area of moraine-dammed glacial lakes in this basin increased by 10 (10.52%) and 5.49 km2 (48.24%) from 2000 to 2019, in which the area of the Jionglaco increased by 3.22 km2. The peak discharge at the breach outlet for five scenarios with different combinations of breach width (80 m and 120 m), depth (2.5 m and 5 m) and flood time (1.5 h and 3 h) are 489 m3/s, 1327.43 m3/s, 444.32 m3/s, 617.47 m3/s and 1570.61 m3/s. With the addition of baseflow in river, the peak discharge at bridge site 15 138.93 km from Jionglaco are 1040.89 m3/s, 1724.00 m3/s, 1024.85 m3/s, 1162.25 m3/s and 1990.52 m3/s. The combination of baseflow in river and the GLOFs discharge results in the increasing peak discharge in the further downstream region. However, the arrival of peak discharge in downstream areas is delayed, which increases the chances of people escaping. This study aims to provide some references for the prevention of GLOFs in this region.


2020 ◽  
Vol 12 (13) ◽  
pp. 5407
Author(s):  
Alton C. Byers ◽  
Mohan Bahadur Chand ◽  
Jonathan Lala ◽  
Milan Shrestha ◽  
Elizabeth A. Byers ◽  
...  

An interdisciplinary field investigation of historic glacial lake outburst floods (GLOFs) in the Kanchenjunga region of Nepal was conducted between April and May, 2019. Oral history and field measurements suggested that at least six major GLOFs have occurred in the region since 1921. A remote sensing analysis confirmed the occurrence of the six GLOFs mentioned by informants, including two smaller flood events not mentioned that had occurred at some point before 1962. A numerical simulation of the Nangama GLOF suggested that it was triggered by an ice/debris avalanche of some 800,000 m3 of material, causing a surge wave that breached the terminal moraine and released an estimated 11.2 × 106 m3 ± 1.4 × 106 m3 of water. Debris from the flood dammed the Pabuk Khola river 2 km below the lake to form what is today known as Chheche Pokhari lake. Some concern has been expressed for the possibility of a second GLOF from Nangama as the result of continued and growing landslide activity from its right lateral moraine. Regular monitoring of all lakes and glaciers is recommended to avoid and/or mitigate the occurrence of future GLOF events in the region. Collectively, the paper demonstrates the benefits and utility of interdisciplinary research approaches to achieving a better understanding of past and poorly documented GLOF events in remote, data-scarce high mountain environments.


2019 ◽  
Vol 31 (4) ◽  
pp. 1132-1143
Author(s):  
LIU Juan ◽  
◽  
YAO Xiaojun ◽  
GAO Yongpeng ◽  
QI Miaomiao ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 464 ◽  
Author(s):  
Mei Liu ◽  
Ningsheng Chen ◽  
Yong Zhang ◽  
Mingfeng Deng

Glacial lake outburst floods (GLOF) evolve into debris flows by erosion and sediment entrainment while propagating down a valley, which highly increases peak discharge and volume and causes destructive damage downstream. This study focuses on GLOF hazard assessment in the Bhote Koshi Basin (BKB), where was highly developed glacial lakes and was intensely affected by the Gorkha earthquake. A new 2016 glacial lake inventory was established, and six unreported GLOF events were identified with geomorphic outburst evidence from GaoFen-1 satellite images and Google Earth. A new method was proposed to assess GLOF hazard, in which large numbers of landslides triggered by earthquake were considered to enter into outburst floods enlarge the discharge and volume of debris flow in the downstream. Four GLOF hazard classes were derived according to glacial lake outburst potential and a flow magnitude assessment matrix, in which 11 glacial lakes were identified to have very high hazard and 24 to have high hazard. The GLOF hazard in BKB increased after the earthquake due to landslide deposits, which increased by 216.03 × 106 m3, and provides abundant deposits for outburst floods to evolve into debris flows. We suggest that in regional GLOF hazard assessment, small glacial lakes should not be overlooked for landslide deposit entrainment along a flood route that would increase the peak discharge, especially in earthquake-affected areas where large numbers of landslides were triggered.


Sign in / Sign up

Export Citation Format

Share Document