Solution and positive solution of a semilinear third-order equation

2008 ◽  
Vol 29 (1-2) ◽  
pp. 153-161 ◽  
Author(s):  
Yuqiang Feng
2017 ◽  
Vol 102 (1-2) ◽  
pp. 3-11 ◽  
Author(s):  
A. I. Aristov
Keyword(s):  

Author(s):  
Eugene F. Fichter

Abstract Points of intersection of a circle and a torus are used to find a solution to the inverse kinematics problem for a three revolute manipulator. Both geometrical and algebraic solution procedures are discussed. The algebraic procedure begins with a third order equation instead of the usual fourth order equation. Since the procedure is basically geometrical it lends itself to a computer implementation which graphically displays each steps in the solution procedure. The potential of this approach for both design and pedagogy is discussed.


1972 ◽  
Vol 13 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Don B. Hinton

Numerous formulae have been given which exhibit the asymptotic behaviour as t → ∞solutions ofwhere F(t) is essentially positive and Several of these results have been unified by a theorem of F. V. Atkinson [1]. It is the purpose of this paper to establish results, analogous to the theorem of Atkinson, for the third order equationand for the fourth order equation


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Liu Yang ◽  
Chunfang Shen ◽  
Dapeng Xie

Positive solutions for a kind of third-order multipoint boundary value problem under the nonresonant conditions and the resonant conditions are considered. In the nonresonant case, by using the Leggett-Williams fixed point theorem, the existence of at least three positive solutions is obtained. In the resonant case, by using the Leggett-Williams norm-type theorem due to O’Regan and Zima, the existence result of at least one positive solution is established. It is remarkable to point out that it is the first time that the positive solution is considered for the third-order boundary value problem at resonance. Some examples are given to demonstrate the main results of the paper.


1975 ◽  
Vol 27 (1) ◽  
pp. 106-110 ◽  
Author(s):  
J. Michael Dolan ◽  
Gene A. Klaasen

Consider the nth order linear equationand particularly the third order equationA nontrivial solution of (1)n is said to be oscillatory or nonoscillatory depending on whether it has infinitely many or finitely many zeros on [a, ∞). Let denote respectively the set of all solutions, oscillatory solutions, nonoscillatory solutions of (1)n. is an n-dimensional linear space. A subspace is said to be nonoscillatory or strongly oscillatory respectively if every nontrivial solution of is nonoscillatory or oscillatory. If contains both oscillatory and nonoscillatory solutions then is said to be weakly oscillatory.


Sign in / Sign up

Export Citation Format

Share Document