time dispersion
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 32)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 73 (3) ◽  
pp. 315-358
Author(s):  
František Trampota ◽  
Jarmila Bíšková ◽  
Alžběta Čerevková ◽  
Ivan Čižmář ◽  
Eva Drozdová ◽  
...  

The article addresses the chronology of Eneolithic inhumation burials in Moravia based on radiocarbon dating. A total of 17 individuals were dated using 20 radiocarbon dates, primarily individuals without grave goods or individuals from problematic contexts. The study mainly covers the period of the Early Eneolithic, to a lesser extent the Middle and Late Eneolithic. The find contexts and anthropological assessments are newly published for most of the burials in question. Based on the chronological analysis of graves dated by radiocarbon dating, it is possible to approximately define the time dispersion of individual burial methods in Moravia. Flat graves with individuals in a stretched position without grave goods can be most reliably dated to about 3800–3600 BC.


2021 ◽  
Author(s):  
Donatella Darsena ◽  
Giacinto Gelli ◽  
Ivan Iudice ◽  
Francesco Verde

Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a “store-carry and forward” fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts – required to implement the proposed detection strategy – are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.


2021 ◽  
Author(s):  
Donatella Darsena ◽  
Giacinto Gelli ◽  
Ivan Iudice ◽  
Francesco Verde

Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a “store-carry and forward” fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts – required to implement the proposed detection strategy – are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.


2021 ◽  
Author(s):  
Donatella Darsena ◽  
Giacinto Gelli ◽  
Ivan Iudice ◽  
Francesco Verde

Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a “store-carry and forward” fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts – required to implement the proposed detection strategy – are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2191
Author(s):  
Haiyan Yao ◽  
Mingzhi Zhu ◽  
Pei Wang ◽  
Yuangang Liu ◽  
Junchao Wei

Carbon nanotubes (CNTs) have attracted great interest in biomedical fields. However, the potential toxicity and poor dispersion of CNTs have greatly limited its application. In this work, a mussel-inspired method combined with the “thiol-Michael” click reaction was used to modify the surface of CNT and improve its properties. Firstly, a CNT was treated with dopamine, and then alginate grafted with L-cysteine was anchored onto the surface of CNT via click reaction, which realized the long-time dispersion of CNT in water. Furthermore, the in vitro test also demonstrated that the alginate may improve the biocompatibility of CNT, and thus may broaden the application of CNT in the biomedical field.


Author(s):  
Vani H. Bhargava ◽  
Poonam S. Sable ◽  
Deepak A. Kulkarni ◽  
Geeta P. Darekar

Antihypertensive drugs are expected to give quicker action with better bioavailability. In the present study, mouth dissolving tablets of Benazepril Hydrochloride were formulated by using direct compression technique employing combination of a superdisintegrants to achieve rapid disintegration of the tablets in oral cavity Croscarmellose sodium, sodium starch glycolate and crospovidone were used as superdisintegrant to prepare six batches of mouth dissolving tablets out of which tablets prepared from crospovidone showed best results. Drug and physical mixture was characterized by FTIR for compatibility study. Optimization technique was employed to predict the best formulation of all the combinations prepared. Prepared formulations were optimized and evaluated for wetting time, dispersion time and different quality parameters. Optimized formulation was compared with marketed formulation for in vitro drug release and it was found that mouth dissolving tablet shows efficient drug release.


Geophysics ◽  
2021 ◽  
pp. 1-29
Author(s):  
Chao Lyu ◽  
Yann Capdeville ◽  
Gang Lv ◽  
Liang Zhao

The explicit time-domain spectral-element method (SEM) for synthesizing seismograms hasgained tremendous credibility within the seismological community at all scales. Althoughthe recent introduction of non-periodic homogenization has addressed the spatial meshing difficulty of the mechanical discontinuities, the Courant-Friedrichs-Lewy (CFL) stability criterionstrictly constrains the maximum time step, which still puts a great burden on the numericalsimulation. In the explicit time-domain SEM, the source of instability of using a time stepbeyond the stability criterion is that some unstable eigenvalues of the updated matrix are largerthan what can be accurately simulated. We succeed in removing the CFL stability condition inthe explicit time-domain SEM by combining the forward time dispersion-transform method,the eigenvalue perturbation, and the inverse time dispersion-transform method. Our theoretical analyses and numerical experiments both in the homogeneous, moderate and strong heterogeneous models, show that this combination can precisely simulate waveforms with timesteps dozens of the CFL limit even towards the Nyquist limit especially for the efficient veryhigh degree SEM, which abundantly saves the iteration times without suffering from the time-dispersion error. It demonstrates a potential application prospect in some situations such as thefull waveform inversion which requires multiple numerical simulations for the same model.


Geophysics ◽  
2021 ◽  
pp. 1-89
Author(s):  
Zhiming Ren ◽  
Qianzong Bao ◽  
Bingluo Gu

A second-order accurate finite-difference (FD) approximation is commonly used to approximate the second-order time derivative of wave equation. The second-order accurate FD scheme may introduce time dispersion in wavefield extrapolation. Lax-Wendroff methods can suppress such dispersion by replacing the high-order time FD error-terms with space FD error correcting terms. However, the time dispersion cannot be completely eliminated and the computation cost dramatically increases with increasing order of (temporal) accuracy. To mitigate the problem, we extend the existing time dispersion correction scheme for second- or fourth-order Lax-Wendroff method to a scheme for arbitrary even-order methods, which uses the forward and inverse time dispersion transform (FTDT and ITDT) to add and remove the time dispersion from synthetic data. We test the correction scheme using a homogeneous model and the Sigsbee2A model. Modeling examples suggest that the use of derived FTDT and ITDT pairs on high-order Lax-Wendroff methods can effectively remove time dispersion errors from high-frequency waves while using longer time steps than allowed in low-order Lax-Wendroff methods. We investigate the influence of the time dispersion on full waveform inversion (FWI) and show an anti-dispersion workflow. We apply the FTDT to source terms and recorded traces before inversion, resulting in that the source and adjoint wavefields contain equal time dispersion from source-side wave propagation, and the modeled and observed traces accumulate equal time dispersion from source- and receiver-side wave propagation. Inversion results reveal that the anti-dispersion workflow is capable of increasing the accuracy of FWI for arbitrary even-order Lax-Wendroff methods. Additionally, the high-order method can obtain better inversion results compared to the second-order method with the same anti-dispersion workflow.


Sign in / Sign up

Export Citation Format

Share Document