Uniform blow-up rates and asymptotic estimates of solutions for diffusion systems with weighted localized sources

2009 ◽  
Vol 32 (2) ◽  
pp. 429-441 ◽  
Author(s):  
Rui Zhang ◽  
Zuodong Yang
2007 ◽  
Vol 2007 ◽  
pp. 1-16 ◽  
Author(s):  
Zhoujin Cui ◽  
Zuodong Yang

This paper investigates the local existence of the nonnegative solution and the finite time blow-up of solutions and boundary layer profiles of diffusion equations with nonlocal reaction sources; we also study the global existence and that the rate of blow-up is uniform in all compact subsets of the domain, the blow-up rate of|u(t)|∞is precisely determined.


2012 ◽  
Vol 32 (11) ◽  
pp. 4001-4014 ◽  
Author(s):  
Monica Marras ◽  
Stella Vernier Piro

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Baojun Miao ◽  
Xuechen Li

By using fractional calculus and the summation by parts formula in this paper, the asymptotic behaviours of solutions of nonlinear neutral fractional delay pantograph equations with continuous arguments are investigated. The asymptotic estimates of solutions for the equation are obtained, which may imply asymptotic stability of solutions. In the end, a particular case is provided to illustrate the main result and the speed of the convergence of the obtained solutions.


Author(s):  
Sergey I. Mitrokhin

In this paper we study the spectral properties of a third-order differential operator with a summable potential with a smooth weight function. The boundary conditions are separated. The method of studying differential operators with summable potential is a development of the method of studying operators with piecewise smooth coefficients. Boundary value problems of this kind arise in the study of vibrations of rods, beams and bridges composed of materials of different densities. The differential equation defining the differential operator is reduced to the solution of the Volterra integral equation by means of the method of variation of constants. The solution of the integral equation is found by the method of successive Picard approximations. Using the study of an integral equation, we obtained asymptotic formulas and estimates for the solutions of a differential equation defining a differential operator. For large values of the spectral parameter, the asymptotics of solutions of the differential equation that defines the differential operator is derived. Asymptotic estimates of solutions of a differential equation are obtained in the same way as asymptotic estimates of solutions of a differential operator with smooth coefficients. The study of boundary conditions leads to the study of the roots of the function, presented in the form of a third-order determinant. To get the roots of this function, the indicator diagram wasstudied. The roots of this equation are in three sectors of an infinitely small size, given by the indicator diagram. The article studies the behavior of the roots of this equation in each of the sectors of the indicator diagram. The asymptotics of the eigenvalues of the differential operator under study is calculated. The formulas found for the asymptotics of eigenvalues allow us to study the spectral properties of the eigenfunctions of the differential operator under study.


Sign in / Sign up

Export Citation Format

Share Document