Optimization of the structural and process parameters in the sheet metal forming process

2014 ◽  
Vol 28 (2) ◽  
pp. 605-619 ◽  
Author(s):  
Jae-Jun Lee ◽  
Gyung-Jin Park
2011 ◽  
Vol 63-64 ◽  
pp. 3-7
Author(s):  
Yan Min Xie

This paper presents a methodology to effectively determine the optimal process parameters using finite element analysis (FEA) and design of experiments (DOE) based on Metamodels. The idea is to establish an approximation function relationship between quality objectives and process parameters to alleviate the expensive computational expense in the optimization iterations for the sheet metal forming process. This paper investigated the Kriging metamodel approach. In order to prove accuracy and efficiency of Kriging method, the nonlinear function as test functions is implemented. At the same time, the practical nonlinear engineering problems such as square drawing are also optimized successfully by proposed method. The results prove Kriging model is an effective method for nonlinear engineering problem in practice.


2005 ◽  
Vol 6-8 ◽  
pp. 465-470 ◽  
Author(s):  
Horst Meier ◽  
O. Dewald ◽  
Jian Zhang

This paper describes a new sheet metal forming process for the production of sheet metal components for limited-lot productions and prototypes. The kinematic based generation of the shape is implemented by means of a new forming machine comprising of two industrial robots. Compared to conventional sheet metal forming machines this newly developed sheet metal forming process offers a high geometrical form flexibility and also shows comparatively small deformation forces for high deformation degrees. The principle of the procedure is based on flexible shaping by means of a freely programmable path-synchronous movement of the two robots. The sheet metal components manufactured in first attempts are simple geometries like truncated pyramids and cones as well as spherical cups. Among other things the forming results could be improved by an adjustment of the movement strategy, a variation of individual process parameters and geometric modifications of the tools. Apart from a measurement of the form deviations of the sheet metal with a Coordinate Measurement Machine rasterised and deformed sheet metals were used for deformation analyses. In order to be able to use the potential of this process, a goal-oriented process design is as necessary as specific process knowledge. In order to achieve process stability and safety the essential process parameters and the process boundaries have to be determined.


Author(s):  
Brad Kinsey ◽  
Neil Krishnan

In order to realize the potential of sheet metal forming and take advantage of new process control capabilities, innovative modifications to the traditional sheet metal forming process must be developed. These modifications are particularly important with respect to Tailor Welded Blank (TWB) forming, which offers an excellent opportunity to reduce manufacturing costs, decrease part weight, and improve the quality of sheet metal stampings. However, tearing near the weld seam and wrinkling in the formed wall area and die addendum of the part often occurs when a traditional forming process is used to form a TWB. Research and industrial experience has shown that these forming concerns can be alleviated through advanced forming techniques, for example using a segmented die process or a non-uniform binder force. The difficulty then becomes determining the key process parameters associated with these forming methods. In this paper, a methodology is presented to effectively and easily determine both the location of a segmented die and a non-uniform binder force by evaluating nodal reaction forces provided from FEA simulations. Also, using FEA simulations to determine the process parameters for another advanced forming process, strain path control tooling, is discussed. The advanced forming processes presented in this paper and the use of FEA to determine key process parameters are critical components to the continued evolution of sheet metal forming processes.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

Sign in / Sign up

Export Citation Format

Share Document