Stiffness analysis of new spacer grid model for metal 3D additive manufacturing

Author(s):  
Yong Hwi Kim ◽  
Jooyoung Ryu ◽  
Chaeyoung Nam ◽  
Jaeboong Choi ◽  
Moon Ki Kim
2021 ◽  
pp. 1-54
Author(s):  
Damien Gueners ◽  
Belhassen Chedli Bouzgarrou ◽  
Helene Chanal

Abstract In this paper, the influence of cable behavior, on Cable Driven Parallel Robots (CDPR) is studied. This study is conducted with the goal of designing a medium size CDPR for additive manufacturing. This robot needs to have a high level of rigidity to guarantee a given tracking tool path error. Firstly, the characterization of different thin cables (steel, Dyneema®, aramid) is presented. The mechanical properties of these cables, in terms of stiffness, damping, hysteresis and creep are compared with regard to additive manufacturing applications. A stiffness model, which takes into account the cable preload, and a dynamic model of CDPR is proposed. The simulations of these two models are compared with experimental results obtained for the range of cables studied using dynamic stiffness analysis on an 8-cable fully constrained CDPR. This paper concludes on the type of cable that should be chosen for our application.


2018 ◽  
Vol 205 (1-2) ◽  
pp. 352-363 ◽  
Author(s):  
Siying Dong ◽  
Wei Liu ◽  
Yang Liu ◽  
Jianqiang Shan

2013 ◽  
Vol 22 (03) ◽  
pp. 180-187 ◽  
Author(s):  
J. Henke ◽  
J. T. Schantz ◽  
D. W. Hutmacher

ZusammenfassungDie Behandlung ausgedehnter Knochen-defekte nach Traumata oder durch Tumoren stellt nach wie vor eine signifikante Heraus-forderung im klinischen Alltag dar. Aufgrund der bestehenden Limitationen aktueller Therapiestandards haben Knochen-Tissue-Engineering (TE)-Verfahren zunehmend an Bedeutung gewonnen. Die Entwicklung von Additive-Manufacturing (AM)-Verfahren hat dabei eine grundlegende Innovation ausgelöst: Durch AM lassen sich dreidimensionale Gerüstträger in einem computergestützten Schichtfür-Schicht-Verfahren aus digitalen 3D-Vorlagen erstellen. Wurden mittels AM zunächst nur Modelle zur haptischen Darstellung knöcherner Pathologika und zur Planung von Operationen hergestellt, so ist es mit der Entwicklung nun möglich, detaillierte Scaffoldstrukturen zur Tissue-Engineering-Anwendung im Knochen zu fabrizieren. Die umfassende Kontrolle der internen Scaffoldstruktur und der äußeren Scaffoldmaße erlaubt eine Custom-made-Anwendung mit auf den individuellen Knochendefekt und die entsprechenden (mechanischen etc.) Anforderungen abgestimmten Konstrukten. Ein zukünftiges Feld ist das automatisierte ultrastrukturelle Design von TE-Konstrukten aus Scaffold-Biomaterialien in Kombination mit lebenden Zellen und biologisch aktiven Wachstumsfaktoren zur Nachbildung natürlicher (knöcherner) Organstrukturen.


Sign in / Sign up

Export Citation Format

Share Document