A note on multiplicative (generalized)-derivations and left ideals in semiprime rings

Author(s):  
Basudeb Dhara ◽  
Sukhendu Kar ◽  
Swarup Kuila
Author(s):  
Asma Ali ◽  
◽  
Shahoor Khan ◽  
Khalid Hamdin

Author(s):  
Vincenzo De Filippis ◽  
Nadeem UR Rehman ◽  
Abu Zaid Ansari

LetRbe a 2-torsion free ring and letLbe a noncentral Lie ideal ofR, and letF:R→RandG:R→Rbe two generalized derivations ofR. We will analyse the structure ofRin the following cases: (a)Ris prime andF(um)=G(un)for allu∈Land fixed positive integersm≠n; (b)Ris prime andF((upvq)m)=G((vrus)n)for allu,v∈Land fixed integersm,n,p,q,r,s≥1; (c)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈[R,R]and fixed integern≥1; and (d)Ris semiprime andF((uv)n)=G((vu)n)for allu,v∈Rand fixed integern≥1.


2021 ◽  
Vol 30 (1) ◽  
pp. 61-68
Author(s):  
G. NAGA MALLESWARI ◽  
S. SREENIVASULU ◽  
G. SHOBHALATHA

Author(s):  
Mohammad Ashraf ◽  
Sajad Ahmad Pary ◽  
Mohd Arif Raza

2018 ◽  
Vol 36 (1) ◽  
pp. 25 ◽  
Author(s):  
Basudeb Dhara

Let $R$ be a ring with center $Z(R)$. A mapping $F:R\rightarrow R$ is called a multiplicative generalized derivation, if $F(xy)=F(x)y+xg(y)$ is fulfilled for all $x,y\in R$, where $g:R\rightarrow R$ is a derivation. In the present paper, our main object is to study the situations: (1) $F(xy)- F(x)F(y)\in Z(R)$, (2) $F(xy)+ F(x)F(y)\in Z(R)$, (3) $F(xy)- F(y)F(x)\in Z(R)$, (4) $F(xy)+ F(y)F(x)\in Z(R)$, (5) $F(xy)- g(y)F(x)\in Z(R)$; for all $x,y$ in some suitable subset of $R$.


ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Basudeb Dhara ◽  
Atanu Pattanayak

Let be a semiprime ring, a nonzero ideal of , and , two epimorphisms of . An additive mapping is generalized -derivation on if there exists a -derivation such that holds for all . In this paper, it is shown that if , then contains a nonzero central ideal of , if one of the following holds: (i) ; (ii) ; (iii) ; (iv) ; (v) for all .


2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.


Sign in / Sign up

Export Citation Format

Share Document