scholarly journals On Generalized ()-Derivations in Semiprime Rings

ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Basudeb Dhara ◽  
Atanu Pattanayak

Let be a semiprime ring, a nonzero ideal of , and , two epimorphisms of . An additive mapping is generalized -derivation on if there exists a -derivation such that holds for all . In this paper, it is shown that if , then contains a nonzero central ideal of , if one of the following holds: (i) ; (ii) ; (iii) ; (iv) ; (v) for all .

Author(s):  
Basudeb Dhara

LetRbe a ring with centerZandIa nonzero ideal ofR. An additive mappingF:R→Ris called a generalized derivation ofRif there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. In the present paper, we prove that ifF([x,y])=±[x,y]for allx,y∈IorF(x∘y)=±(x∘y)for allx,y∈I, then the semiprime ringRmust contains a nonzero central ideal, providedd(I)≠0. In caseRis prime ring,Rmust be commutative, providedd≠0. The cases (i)F([x,y])±[x,y]∈Zand (ii)F(x∘y)±(x∘y)∈Zfor allx,y∈Iare also studied.


2015 ◽  
Vol 34 (2) ◽  
pp. 29
Author(s):  
Shuliang Huang ◽  
Nadeem Ur Rehman

Let $R$ be a prime ring, $I$ a nonzero ideal of $R$ and $m, n$  fixed positive integers.  If $R$ admits a generalized derivation $F$ associated with a  nonzero derivation $d$ such that $(F([x,y])^{m}=[x,y]_{n}$ for  all $x,y\in I$, then $R$ is commutative. Moreover  we also examine the case when $R$ is a semiprime ring.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250111 ◽  
Author(s):  
BASUDEB DHARA ◽  
SHAKIR ALI

Let R be a ring with center Z(R) and n be a fixed positive integer. A mapping f : R → R is said to be n-centralizing on a subset S of R if f(x)xn – xn f(x) ∈ Z(R) holds for all x ∈ S. The main result of this paper states that every n-centralizing generalized derivation F on a (n + 1)!-torsion free semiprime ring is n-commuting. Further, we prove that if a generalized derivation F : R → R is n-centralizing on a nonzero left ideal λ, then either R contains a nonzero central ideal or λD(Z) ⊆ Z(R) for some derivation D of R. As an application, n-centralizing generalized derivations of C*-algebras are characterized.


2016 ◽  
Vol 27 (1) ◽  
pp. 87-98
Author(s):  
MM Rahman ◽  
AC Paul

In this paper we prove that under some suitable conditions, every Jordan generalized derivation on Lie ideals of a 2-torsion free completely semiprime ? -ring is a generalized derivation on the same.Bangladesh J. Sci. Res. 27(1): 87-98, June-2014


2014 ◽  
Vol 96 (3) ◽  
pp. 326-337 ◽  
Author(s):  
M. TAMER KOŞAN ◽  
TSIU-KWEN LEE

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a semiprime ring with extended centroid $C$ and with maximal right ring of quotients $Q_{mr}(R)$. Let $d{:}\ R\to Q_{mr}(R)$ be an additive map and $b\in Q_{mr}(R)$. An additive map $\delta {:}\ R\to Q_{mr}(R)$ is called a (left) $b$-generalized derivation with associated map $d$ if $\delta (xy)=\delta (x)y+bxd(y)$ for all $x, y\in R$. This gives a unified viewpoint of derivations, generalized derivations and generalized $\sigma $-derivations with an X-inner automorphism $\sigma $. We give a complete characterization of $b$-generalized derivations of $R$ having nilpotent values of bounded index. This extends several known results in the literature.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


Author(s):  
Deepak Kumar ◽  
Bharat Bhushan ◽  
Gurninder S. Sandhu

Let [Formula: see text] be a prime ring with involution ∗ of the second kind. An additive mapping [Formula: see text] is called generalized derivation if there exists a unique derivation [Formula: see text] such that [Formula: see text] for all [Formula: see text] In this paper, we investigate the structure of [Formula: see text] and describe the possible forms of generalized derivations of [Formula: see text] that satisfy specific ∗-differential identities. Precisely, we study the following situations: (i) [Formula: see text] (ii) [Formula: see text] (iii) [Formula: see text] (iv) [Formula: see text] for all [Formula: see text] Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.


2018 ◽  
Vol 36 (1) ◽  
pp. 25 ◽  
Author(s):  
Basudeb Dhara

Let $R$ be a ring with center $Z(R)$. A mapping $F:R\rightarrow R$ is called a multiplicative generalized derivation, if $F(xy)=F(x)y+xg(y)$ is fulfilled for all $x,y\in R$, where $g:R\rightarrow R$ is a derivation. In the present paper, our main object is to study the situations: (1) $F(xy)- F(x)F(y)\in Z(R)$, (2) $F(xy)+ F(x)F(y)\in Z(R)$, (3) $F(xy)- F(y)F(x)\in Z(R)$, (4) $F(xy)+ F(y)F(x)\in Z(R)$, (5) $F(xy)- g(y)F(x)\in Z(R)$; for all $x,y$ in some suitable subset of $R$.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Kalyan Kumar Dey ◽  
Akhil Chandra Paul ◽  
Isamiddin S. Rakhimov

LetMbe a 2-torsion-free semiprimeΓ-ring satisfying the conditionaαbβc=aβbαcfor alla,b,c∈M,  α,β∈Γ, and letD:M→Mbe an additive mapping such thatD(xαx)=D(x)αx+xαd(x)for allx∈M,  α∈Γand for some derivationdofM. We prove thatDis a generalized derivation.


2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.


Sign in / Sign up

Export Citation Format

Share Document