Approximations of a function whose first and second derivatives belonging to generalized Hölder’s class by extended Legendre wavelet method and its applications in solutions of differential equations

Author(s):  
Shyam Lal ◽  
Priya R. Sharma
2021 ◽  
Vol 14 (3) ◽  
pp. 706-722
Author(s):  
Francis Ohene Boateng ◽  
Joseph Ackora-Prah ◽  
Benedict Barnes ◽  
John Amoah-Mensah

In this paper, we introduce a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) for solving two dimensional (2D) linear elliptic  partial differential equations (PDEs) with Dirichlet boundary conditions on regular geometric domain. The method reduces the 2D PDE into a 1D system of ordinary differential equations and applies a compactly supported wavelet to approximate the solution. The problem is embedded in a fictitious domain to aid the enforcement of the Dirichlet boundary conditions. We present numerical analysis and show that our method yields better approximation to the solution of the Dirichlet problem than traditional methods like the finite element and finite difference methods.


2020 ◽  
Author(s):  
Jüri Majak ◽  
Mart Ratas ◽  
Kristo Karjust ◽  
Boris Shvartsman

The study is focused on the development, adaption and evaluation of the higher order Haar wavelet method (HOHWM) for solving differential equations. Accuracy and computational complexity are two measurable key characteristics of any numerical method. The HOHWM introduced recently by authors as an improvement of the widely used Haar wavelet method (HWM) has shown excellent accuracy and convergence results in the case of all model problems studied. The practical value of the proposed HOHWM approach is that it allows reduction of the computational cost by several magnitudes as compared to HWM, depending on the mesh and the method parameter values used.


Sign in / Sign up

Export Citation Format

Share Document