On the Schouten and Wagner curvature tensors

Author(s):  
Dennis I. Barrett ◽  
Claudiu C. Remsing
Keyword(s):  
Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4865-4873 ◽  
Author(s):  
Milos Petrovic

Generalized m-parabolic K?hler manifolds are defined and holomorphically projective mappings between such manifolds have been considered. Two non-linear systems of PDE?s in covariant derivatives of the first and second kind for the existence of such mappings are given. Also, relations between five linearly independent curvature tensors of generalized m-parabolic K?hler manifolds with respect to these mappings are examined.


2008 ◽  
Vol 05 (07) ◽  
pp. 1109-1135 ◽  
Author(s):  
NABIL. L. YOUSSEF ◽  
A. M. SID-AHMED

In this paper, we study Absolute Parallelism (AP-) geometry on the tangent bundle TM of a manifold M. Accordingly, all geometric objects defined in this geometry are not only functions of the positional argument x, but also depend on the directional argument y. Moreover, many new geometric objects, which have no counterpart in the classical AP-geometry, emerge in this different framework. We refer to such a geometry as an Extended Absolute Parallelism (EAP-) geometry. The building blocks of the EAP-geometry are a nonlinear connection (assumed given a priori) and 2n linearly independent vector fields (of special form) defined globally on TM defining the parallelization. Four different d-connections are used to explore the properties of this geometry. Simple and compact formulae for the curvature tensors and the W-tensors of the four defined d-connections are obtained, expressed in terms of the torsion and the contortion tensors of the EAP-space. Further conditions are imposed on the canonical d-connection assuming that it is of Cartan type (resp. Berwald type). Important consequences of these assumptions are investigated. Finally, a special form of the canonical d-connection is studied under which the classical AP-geometry is recovered naturally from the EAP-geometry. Physical aspects of some of the geometric objects investigated are pointed out and possible physical implications of the EAP-space are discussed, including an outline of a generalized field theory on the tangent bundle TM of M.


Filomat ◽  
2019 ◽  
Vol 33 (4) ◽  
pp. 1179-1184
Author(s):  
Ana Velimirovic ◽  
Milan Zlatanovic

Using the non-symmetry of a connection, it is possible to introduce four types of covariant derivatives. Based on these derivatives, several types of Ricci?s identities and twelve curvature tensors are obtained. Five of them are linearly independent but the other curvature tensors can be expressed as linear combinations of these five linearly independent curvature tensors and the curvature tensor of the corresponding associated symmetric space. The semisymmetric connection is defined and the properties of two of the five independent curvature tensors are analyzed. In the same manner, the properties for three others curvature tensors may be derived.


Filomat ◽  
2009 ◽  
Vol 23 (2) ◽  
pp. 34-42 ◽  
Author(s):  
Milan Zlatanovic ◽  
Svetislav Mincic

In the some previous works we have obtained several curvature tensors in the generalized Finsler space GFN (the space with non-symmetric basic tensor and non-symmetric connection in Rund's sence). In this work we study identities for the mentioned tensors (the antisymmetriy with respect of two indices, the cyclic symmetry, the symmetry with respect of pairs of indices).


Author(s):  
Ibrahim Gullu ◽  
S. Habib Mazharimousavi ◽  
S. Danial Forghani

A spherical planetary nebula is described as a geometric model. The nebula itself is considered as a thin-shell, which is visualized as a boundary of two spacetimes. The inner and outer curvature tensors of the thin-shell are found in order to get an expression of the energy-momentum tensor on the thin-shell. The energy density and pressure expressions are derived using the energy-momentum tensor. The time evolution of the radius of the thin-shell is obtained in terms of the energy density. The model is tested by using a simple power function for decreasing energy density and the evolution pattern of the planetary nebula is attained.


2021 ◽  
Vol 45 (02) ◽  
pp. 237-258
Author(s):  
ABSOS ALI SHAIKH ◽  
TRAN QUOC BINH ◽  
HARADHAN KUNDU

The main objective of the present paper is to investigate the curvature properties of generalized pp-wave metrics. It is shown that a generalized pp-wave spacetime is Ricci generalized pseudosymmetric, 2-quasi-Einstein and generalized quasi-Einstein in the sense of Chaki. As a special case it is shown that pp-wave spacetime is semisymmetric, semisymmetric due to conformal and projective curvature tensors, R-space by Venzi and satisfies the pseudosymmetric type condition P ⋅ P = −13Q(S,P). Again we investigate the sufficient condition for which a generalized pp-wave spacetime turns into pp-wave spacetime, pure radiation spacetime, locally symmetric and recurrent. Finally, it is shown that the energy-momentum tensor of pp-wave spacetime is parallel if and only if it is cyclic parallel. Again the energy momentum tensor is Codazzi type if it is cyclic parallel but the converse is not true as shown by an example. Finally, we make a comparison between the curvature properties of the Robinson-Trautman metric and generalized pp-wave metric.


2011 ◽  
Vol 08 (04) ◽  
pp. 753-772 ◽  
Author(s):  
A. SOLEIMAN

The present paper deals with an intrinsic investigation of the notion of a parallel π-vector field on the pullback bundle of a Finsler manifold (M, L). The effect of the existence of a parallel π-vector field on some important special Finsler spaces is studied. An intrinsic investigation of a particular β-change, namely the energy β-change ([Formula: see text]with[Formula: see text] being a parallel π-vector field), is established. The relation between the two Barthel connections Γ and [Formula: see text], corresponding to this change, is found. This relation, together with the fact that the Cartan and the Barthel connections have the same horizontal and vertical projectors, enable us to study the energy β-change of the fundamental linear connection in Finsler geometry: The Cartan connection, the Berwald connection, the Chern connection and the Hashiguchi connection. Moreover, the change of their curvature tensors is concluded. It should be pointed out that the present work is formulated in a prospective modern coordinate-free form.


Sign in / Sign up

Export Citation Format

Share Document