scholarly journals A geometrical model for the evolution of spherical planetary nebulae based on thin-shell formalism

Author(s):  
Ibrahim Gullu ◽  
S. Habib Mazharimousavi ◽  
S. Danial Forghani

A spherical planetary nebula is described as a geometric model. The nebula itself is considered as a thin-shell, which is visualized as a boundary of two spacetimes. The inner and outer curvature tensors of the thin-shell are found in order to get an expression of the energy-momentum tensor on the thin-shell. The energy density and pressure expressions are derived using the energy-momentum tensor. The time evolution of the radius of the thin-shell is obtained in terms of the energy density. The model is tested by using a simple power function for decreasing energy density and the evolution pattern of the planetary nebula is attained.

2003 ◽  
Vol 12 (06) ◽  
pp. 1095-1112 ◽  
Author(s):  
METIN ARIK ◽  
OZGUR DELICE

We present cylindrically symmetric, static solutions of the Einstein field equations around a line singularity such that the energy momentum tensor corresponds to infinitely thin photonic shells. Positivity of the energy density of the thin shell and the line singularity is discussed. It is also shown that thick shells containing mostly radiation are possible in a numerical solution.


Author(s):  
Deep Bhattacharjee

Chronology unprotected mechanisms are considered with a very low gravitational polarization to make the wormhole traversal with positive energy density everywhere. No need of exotic matter has been considered with the assumption of the Einstein-Dirac-Maxwell Fields, encountering above the non-zero stress-energy-momentum tensor through spacelike hypersurfaces by a hyperbolic coordinate shift.


2021 ◽  
Vol 45 (02) ◽  
pp. 237-258
Author(s):  
ABSOS ALI SHAIKH ◽  
TRAN QUOC BINH ◽  
HARADHAN KUNDU

The main objective of the present paper is to investigate the curvature properties of generalized pp-wave metrics. It is shown that a generalized pp-wave spacetime is Ricci generalized pseudosymmetric, 2-quasi-Einstein and generalized quasi-Einstein in the sense of Chaki. As a special case it is shown that pp-wave spacetime is semisymmetric, semisymmetric due to conformal and projective curvature tensors, R-space by Venzi and satisfies the pseudosymmetric type condition P ⋅ P = −13Q(S,P). Again we investigate the sufficient condition for which a generalized pp-wave spacetime turns into pp-wave spacetime, pure radiation spacetime, locally symmetric and recurrent. Finally, it is shown that the energy-momentum tensor of pp-wave spacetime is parallel if and only if it is cyclic parallel. Again the energy momentum tensor is Codazzi type if it is cyclic parallel but the converse is not true as shown by an example. Finally, we make a comparison between the curvature properties of the Robinson-Trautman metric and generalized pp-wave metric.


2006 ◽  
Vol 21 (21) ◽  
pp. 4373-4406 ◽  
Author(s):  
E. I. GUENDELMAN ◽  
A. B. KAGANOVICH

There exist field theory models where the fermionic energy–momentum tensor contains a term proportional to [Formula: see text] which may contribute to the dark energy. We show that this new field theory effect can be achieved in the Two Measures Field Theory (TMT) in the cosmological context. TMT is an alternative gravity and matter field theory where the gravitational interaction of fermionic matter is reduced to that of General Relativity when the energy density of the fermion matter is much larger than the dark energy density. In this case also the fifth force problem is solved automatically. In the opposite limit, where the magnitudes of fermionic energy density and scalar field dark energy density become comparable, nonrelativistic fermions can participate in the cosmological expansion in a very unusual manner. Some of the features of such Cosmo-Low-Energy-Physics (CLEP) states are studied in a toy model of the late time universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos, and the following results are obtained: neutrino mass increases as m ∝ a3/2 (a is the scale factor); the proportionality factor in the noncanonical contribution to the neutrino energy–momentum tensor (proportional to the metric tensor) approaches a constant as a(t) → ∞ and therefore the noncanonical contribution to the neutrino energy density dominates over the canonical one ~ m/a3 ~ a-3/2 at the late enough universe; hence the neutrino gas equation-of-state approaches w = -1, i.e. neutrinos in the CLEP regime behave as a sort of dark energy as a → ∞; the equation-of-state for the total (scalar field + neutrino) energy density and pressure also approaches w = -1 in the CLEP regime; besides the total energy density of such universe is less than it would be in the universe filled with the scalar field alone. An analytic solution is presented. A domain structure of the dark energy seems to be possible. We speculate that decays of the CLEP state neutrinos may be both an origin of cosmic rays and responsible for a late super-acceleration of the universe. In this sense the CLEP states exhibit simultaneously new physics at very low densities and for very high particle masses.


1970 ◽  
Vol 7 (7) ◽  
pp. 1-2 ◽  
Author(s):  
SK Sharma ◽  
PR Dhungel ◽  
U Khanal

The solutions of the Maxwellian field in FRW spacetime, found by using the Newman Penrose formalism, is used to determine the energy-momentum tensor. The tensor is obviously traceless, with the energy density equal to the sum of the radial and the two tangential pressures. But it turns out that the radial and tangential pressures are not equal, giving rise to anisotropy. Such anisotropy can be the origin of the rotation of galaxies. Another result is that the photon energy in a closed universe are quantized in units of one from the lowest value of two upwards. The lowest quantum of two can be interpreted as one unit of spin energy and one of translational energy. Key words: Galactic structure; Maxwellian field; Anisotropic pressure. DOI: 10.3126/sw.v7i7.3814 Scientific World Vol.7(7) 2009 pp.1-2


1980 ◽  
Vol 58 (8) ◽  
pp. 1163-1170 ◽  
Author(s):  
Gérard A. Maugin

Arguments recently proposed by Kranyš concerning the nondistinguishability between Abraham's and Minkowski's electromagnetic contributions to the total energy-momentum tensor of the same relativistic, thermodynamically closed system are extended to other electromagnetic energy-momentum tensors (as proposed by Grot and Eringen and de Groot and Suttorp). The adjustment of the corresponding "matter" contribution, which occurs in each element of the canonical space-time decomposition of the total energy-momentum tensor, is exhibited in those different cases. For dissipation-free systems this adjustment can be achieved for each case by means of an ad hoc Legendre transformation on the internal energy density. The arguments used do not presuppose any isotropy and linearity of the medium and can be readily extended to the cases of media with hysteresis and media endowed with intrinsic spins, be they of a fluid-like or solid-like type of mechanical behavior.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Emre Dil

We consider a spinor quintom dark energy model with intrinsic spin, in the framework of Einstein-Cartan-Sciama-Kibble theory. After constructing the mathematical formalism of the model, we obtain the spin contributed total energy-momentum tensor giving the energy density and the pressure of the quintom model, and then we find the equation of state parameter, Hubble parameter, deceleration parameter, state finder parameter, and some distance parameter in terms of the spinor potential. Choosing suitable potentials leads to the quintom scenario crossing between quintessence and phantom epochs, or vice versa. Analyzing three quintom scenarios provides stable expansion phases avoiding Big Rip singularities and yielding matter dominated era through the stabilization of the spinor pressure via spin contribution. The stabilization in spinor pressure leads to neglecting it as compared to the increasing energy density and constituting a matter dominated stable expansion epoch.


2020 ◽  
Vol 29 (07) ◽  
pp. 2050051
Author(s):  
S. Khakshournia ◽  
R. Mansouri

The Israel junction conditions of a thin shell in the context of Einstein–Cartan gravity are revisited. It is shown that with a choice of the torsion discontinuity taken to be orthogonal to the hypersurface and consistent with the antisymmetric properties of torsion tensor and contorsion tensor, the generalized asymmetric surface energy–momentum tensor turns out to be tangent to the hypersurface while the resulting generalized Israel junction conditions are modified. The main differences to previous works are mentioned.


2022 ◽  
Vol 9 ◽  
Author(s):  
Uday Chand De ◽  
Sameh Shenawy ◽  
H. M. Abu-Donia ◽  
Nasser Bin Turki ◽  
Suliman Alsaeed ◽  
...  

The main object of this paper is to investigate spacetimes admitting concircular curvature tensor in f(R) gravity theory. At first, concircularly flat and concircularly flat perfect fluid spacetimes in fR gravity are studied. In this case, the forms of the isotropic pressure p and the energy density σ are obtained. Next, some energy conditions are considered. Finally, perfect fluid spacetimes with divergence free concircular curvature tensor in f(R) gravity are studied; amongst many results, it is proved that if the energy-momentum tensor of such spacetimes is recurrent or bi-recurrent, then the Ricci tensor is semi-symmetric and hence these spacetimes either represent inflation or their isotropic pressure and energy density are constants.


Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 4107-4121
Author(s):  
Nenad Vesic

In this paper, we analyzed the physical meaning of scalar curvatures for a generalized Riemannian space. It is developed the Madsen?s formulae for pressures and energy-densities with respect to the corresponding energy-momentum tensors. After that, the energy-momentum tensors, pressures, energy-densities and state-parameters are analyzed with respect to different concepts of generalized Riemannian spaces. At the end of this paper, linearities of the energy-momentum tensor, pressure, energy-density and the state-parameter are examined.


Sign in / Sign up

Export Citation Format

Share Document