scholarly journals Uniformization with Infinitesimally Metric Measures

Author(s):  
Kai Rajala ◽  
Martti Rasimus ◽  
Matthew Romney

AbstractWe consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to $${{\mathbb {R}}}^2$$ R 2 . Given a measure $$\mu $$ μ on such a space, we introduce $$\mu $$ μ -quasiconformal maps$$f:X \rightarrow {{\mathbb {R}}}^2$$ f : X → R 2 , whose definition involves deforming lengths of curves by $$\mu $$ μ . We show that if $$\mu $$ μ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $$\mu $$ μ -quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

2020 ◽  
Vol 8 (1) ◽  
pp. 114-165
Author(s):  
Tetsu Toyoda

AbstractGromov (2001) and Sturm (2003) proved that any four points in a CAT(0) space satisfy a certain family of inequalities. We call those inequalities the ⊠-inequalities, following the notation used by Gromov. In this paper, we prove that a metric space X containing at most five points admits an isometric embedding into a CAT(0) space if and only if any four points in X satisfy the ⊠-inequalities. To prove this, we introduce a new family of necessary conditions for a metric space to admit an isometric embedding into a CAT(0) space by modifying and generalizing Gromov’s cycle conditions. Furthermore, we prove that if a metric space satisfies all those necessary conditions, then it admits an isometric embedding into a CAT(0) space. This work presents a new approach to characterizing those metric spaces that admit an isometric embedding into a CAT(0) space.


2020 ◽  
Vol 8 (1) ◽  
pp. 166-181
Author(s):  
Rebekah Jones ◽  
Panu Lahti

AbstractWe prove a duality relation for the moduli of the family of curves connecting two sets and the family of surfaces separating the sets, in the setting of a complete metric space equipped with a doubling measure and supporting a Poincaré inequality. Then we apply this to show that quasiconformal mappings can be characterized by the fact that they quasi-preserve the modulus of certain families of surfaces.


1998 ◽  
Vol 181 (1) ◽  
pp. 1-61 ◽  
Author(s):  
Juha Heinonen ◽  
Pekka Koskela

Fractals ◽  
2017 ◽  
Vol 25 (02) ◽  
pp. 1750021
Author(s):  
R. K. ASWATHY ◽  
SUNIL MATHEW

Self-similarity is a common tendency in nature and physics. It is wide spread in geo-physical phenomena like diffusion and iteration. Physically, an object is self-similar if it is invariant under a set of scaling transformation. This paper gives a brief outline of the analytical and set theoretical properties of different types of weak self-similar sets. It is proved that weak sub self-similar sets are closed under finite union. Weak sub self-similar property of the topological boundary of a weak self-similar set is also discussed. The denseness of non-weak super self-similar sets in the set of all non-empty compact subsets of a separable complete metric space is established. It is proved that the power of weak self-similar sets are weak super self-similar in the product metric and weak self-similarity is preserved under isometry. A characterization of weak super self-similar sets using weak sub contractions is also presented. Exact weak sub and super self-similar sets are introduced in this paper and some necessary and sufficient conditions in terms of weak condensation IFS are presented. A condition for a set to be both exact weak super and sub self-similar is obtained and the denseness of exact weak super self similar sets in the set of all weak self-similar sets is discussed.


1975 ◽  
Vol 27 (6) ◽  
pp. 1229-1238
Author(s):  
Kenneth C. Abernethy

The study of metrization has led to the development of a number of new topological spaces, called generalized metric spaces, within the past fifteen years. For a survey of results in metrization theory involving many of these spaces, the reader is referred to [13]. Quite a few of these generalized metric spaces have been studied extensively, somewhat independently of their role in metrization theorems. Specifically, we refer here to characterizations of these spaces by various workers as images of metric spaces. Results in this area have been obtained by Alexander [2], Arhangel'skii [3], Burke [5], Heath [10], Michael [15], Nagata [16], and the author [1], to mention a few. Later we will recall specifically some of these results.


2018 ◽  
Vol 11 (4) ◽  
pp. 387-404 ◽  
Author(s):  
Hiroaki Aikawa ◽  
Anders Björn ◽  
Jana Björn ◽  
Nageswari Shanmugalingam

AbstractThe variational capacity {\operatorname{cap}_{p}} in Euclidean spaces is known to enjoy the density dichotomy at large scales, namely that for every {E\subset{\mathbb{R}}^{n}},\inf_{x\in{\mathbb{R}}^{n}}\frac{\operatorname{cap}_{p}(E\cap B(x,r),B(x,2r))}% {\operatorname{cap}_{p}(B(x,r),B(x,2r))}is either zero or tends to 1 as {r\to\infty}. We prove that this property still holds in unbounded complete geodesic metric spaces equipped with a doubling measure supporting a p-Poincaré inequality, but that it can fail in nongeodesic metric spaces and also for the Sobolev capacity in {{\mathbb{R}}^{n}}. It turns out that the shape of balls impacts the validity of the density dichotomy. Even in more general metric spaces, we construct families of sets, such as John domains, for which the density dichotomy holds. Our arguments include an exact formula for the variational capacity of superlevel sets for capacitary potentials and a quantitative approximation from inside of the variational capacity.


Sign in / Sign up

Export Citation Format

Share Document