scholarly journals Correction to: Living Shorelines Support Nearshore Benthic Communities in Upper and Lower Chesapeake Bay

2019 ◽  
Vol 42 (3) ◽  
pp. 915-915
Author(s):  
Theresa M. Davenport ◽  
Rochelle D. Seitz ◽  
Kathleen E. Knick ◽  
Nina Jackson
2017 ◽  
Vol 41 (S1) ◽  
pp. 197-206 ◽  
Author(s):  
Theresa M. Davenport ◽  
Rochelle D. Seitz ◽  
Kathleen E. Knick ◽  
Nina Jackson

Abstract Human population growth and sea-level rise are increasing the demand for protection of coastal property against shoreline erosion. Living shorelines are designed to provide shoreline protection and are constructed or reinforced using natural elements. While living shorelines are gaining popularity with homeowners, their ability to provide ecological services (e.g., habitat provision and trophic transfer) is not well understood, and information is needed to improve coastal and resource management decision-making. We examined benthic community responses to living shorelines in two case-study subestuaries of Chesapeake Bay using a before-after control-impact study design. At Windy Hill, a bulkhead was removed and replaced by three tombolos, sand fill, and native marsh vegetation. At Lynnhaven, 25 m of eroding marsh shoreline was stabilized with coir logs, sand fill, and native marsh vegetation. Communities of large (> 3 mm) infauna adjacent to living shorelines at both locations tended to increase in biomass by the end of the study period. Community compositions changed significantly following living shoreline construction at Windy Hill, reflecting a trend toward higher density and biomass of large bivalves at living shorelines compared to pre-construction. Increasing trends in density and biomass of clams and simultaneously decreasing density and decreasing trends in biomass of polychaetes suggest a transition toward stable infaunal communities at living shorelines over time, though longer-term studies are warranted.


2022 ◽  
Vol 8 ◽  
Author(s):  
Piero L. F. Mazzini ◽  
Cassia Pianca

Prolonged events of anomalously warm sea water temperature, or marine heatwaves (MHWs), have major detrimental effects to marine ecosystems and the world's economy. While frequency, duration and intensity of MHWs have been observed to increase in the global oceans, little is known about their potential occurrence and variability in estuarine systems due to limited data in these environments. In the present study we analyzed a novel data set with over three decades of continuous in situ temperature records to investigate MHWs in the largest and most productive estuary in the US: the Chesapeake Bay. MHWs occurred on average twice per year and lasted 11 days, resulting in 22 MHW days per year in the bay. Average intensities of MHWs were 3°C, with maximum peaks varying between 6 and 8°C, and yearly cumulative intensities of 72°C × days on average. Large co-occurrence of MHW events was observed between different regions of the bay (50–65%), and also between Chesapeake Bay and the Mid-Atlantic Bight (40–50%). These large co-occurrences, with relatively short lags (2–5 days), suggest that coherent large-scale air-sea heat flux is the dominant driver of MHWs in this region. MHWs were also linked to large-scale climate modes of variability: enhancement of MHW days in the Upper Bay were associated with the positive phase of Niño 1+2, while enhancement and suppression of MHW days in both the Mid and Lower Bay were associated with positive and negative phases of North Atlantic Oscillation, respectively. Finally, as a result of long-term warming of the Chesapeake Bay, significant trends were detected for MHW frequency, MHW days and yearly cumulative intensity. If these trends persist, by the end of the century the Chesapeake Bay will reach a semi-permanent MHW state, when extreme temperatures will be present over half of the year, and thus could have devastating impacts to the bay ecosystem, exacerbating eutrophication, increasing the severity of hypoxic events, killing benthic communities, causing shifts in species composition and decline in important commercial fishery species. Improving our basic understanding of MHWs in estuarine regions is necessary for their future predictability and to guide management decisions in these valuable environments.


2021 ◽  
Vol 8 ◽  
Author(s):  
Iacopo Vona ◽  
Cindy M. Palinkas ◽  
William Nardin

Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection.


Itinerario ◽  
2000 ◽  
Vol 24 (2) ◽  
pp. 146-169 ◽  
Author(s):  
Michael Leroy Oberg

In August of 1587 Manteo, an Indian from Croatoan Island, joined a group of English settlers in an attack on the native village of Dasemunkepeuc, located on the coast of present-day North Carolina. These colonists, amongst whom Manteo lived, had landed on Roanoke Island less than a month before, dumped there by a pilot more interested in hunting Spanish prize ships than in carrying colonists to their intended place of settlement along the Chesapeake Bay. The colonists had hoped to re-establish peaceful relations with area natives, and for that reason they relied upon Manteo to act as an interpreter, broker, and intercultural diplomat. The legacy of Anglo-Indian bitterness remaining from Ralph Lane's military settlement, however, which had hastily abandoned the island one year before, was too great for Manteo to overcome. The settlers found themselves that summer in the midst of hostile Indians.


Sign in / Sign up

Export Citation Format

Share Document