benthic communities
Recently Published Documents


TOTAL DOCUMENTS

1446
(FIVE YEARS 347)

H-INDEX

73
(FIVE YEARS 7)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 258
Author(s):  
Laura Gruppuso ◽  
Alberto Doretto ◽  
Elisa Falasco ◽  
Stefano Fenoglio ◽  
Michele Freppaz ◽  
...  

Streams and rivers are becoming increasingly intermittent in Alpine regions due to the global climate change and related increases of local water abstractions, making it fundamental to investigate the occurrence of supraseasonal drying events and their correlated effects. We aimed to investigate leaf litter decomposition, the C:N ratio of the litter, and changes in associated macroinvertebrate communities in three reaches of the Po River: One upstream, consistently perennial, a perennial mid-reach with high hydrological variability, and an intermittent downstream reach. We placed leaf litter bags of two leaf types—chestnut and oak; both showed comparable decomposition rates, but the remaining litter mass was different and was attributed to the C:N ratio and palatability. Furthermore, (1) in perennial reaches, leaf litter decomposed faster than in the intermittent ones; (2) in intermittent reaches, the C:N ratio showed a decreasing trend in both leaf types, indicating that drying affected the nitrogen consumption, therefore the conditioning phase; (3) associated macroinvertebrate communities were richer and more stable in perennial reaches, where a higher richness and abundance of EPT taxa and shredders was observed. Our results suggest that the variations in the hydrology of mountain streams caused by global climate change could significantly impact on functional processes and biodiversity of benthic communities.


2022 ◽  
Author(s):  
Dayong Yang ◽  
Honglun Chang ◽  
Xiao Liu ◽  
Peng Wan ◽  
Liming Shen

Abstract Several Late Viséan-Serpukhovian coral reefs were identified in Langping, Tianlin. To further understand of environment that was suitable for the development of reef-building communities and the construction of coral reefs in Langping, in this paper, part of the reef-building environmental and the ecological characteristics of coral reefs then were recovered by analyzing the development settings, palaeogeography, sedimentation of reefs, the response to hydrodynamic conditions of reef-building corals, effects of disturbance and non-reef-building organism on reef communities, and the influence of coral morphology on reef development. The sedimentary environment of Langping in Late Viséan-Serpukhovian is considered to be suitable for the development of benthic communities. The current appearance of reefs is determined by both coral populations ecological characteristics and reef-building environment.


2022 ◽  
Vol 8 ◽  
Author(s):  
Piero L. F. Mazzini ◽  
Cassia Pianca

Prolonged events of anomalously warm sea water temperature, or marine heatwaves (MHWs), have major detrimental effects to marine ecosystems and the world's economy. While frequency, duration and intensity of MHWs have been observed to increase in the global oceans, little is known about their potential occurrence and variability in estuarine systems due to limited data in these environments. In the present study we analyzed a novel data set with over three decades of continuous in situ temperature records to investigate MHWs in the largest and most productive estuary in the US: the Chesapeake Bay. MHWs occurred on average twice per year and lasted 11 days, resulting in 22 MHW days per year in the bay. Average intensities of MHWs were 3°C, with maximum peaks varying between 6 and 8°C, and yearly cumulative intensities of 72°C × days on average. Large co-occurrence of MHW events was observed between different regions of the bay (50–65%), and also between Chesapeake Bay and the Mid-Atlantic Bight (40–50%). These large co-occurrences, with relatively short lags (2–5 days), suggest that coherent large-scale air-sea heat flux is the dominant driver of MHWs in this region. MHWs were also linked to large-scale climate modes of variability: enhancement of MHW days in the Upper Bay were associated with the positive phase of Niño 1+2, while enhancement and suppression of MHW days in both the Mid and Lower Bay were associated with positive and negative phases of North Atlantic Oscillation, respectively. Finally, as a result of long-term warming of the Chesapeake Bay, significant trends were detected for MHW frequency, MHW days and yearly cumulative intensity. If these trends persist, by the end of the century the Chesapeake Bay will reach a semi-permanent MHW state, when extreme temperatures will be present over half of the year, and thus could have devastating impacts to the bay ecosystem, exacerbating eutrophication, increasing the severity of hypoxic events, killing benthic communities, causing shifts in species composition and decline in important commercial fishery species. Improving our basic understanding of MHWs in estuarine regions is necessary for their future predictability and to guide management decisions in these valuable environments.


2022 ◽  
Author(s):  
Christina Pavloudi ◽  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou ◽  
Katerina Vasileiadou ◽  
Christos Arvanitidis

2021 ◽  
Vol 9 ◽  
Author(s):  
Gonzalo Bravo ◽  
Juan Pablo Livore ◽  
Nicolás Battini ◽  
Marianela Gastaldi ◽  
Daniel Lauretta ◽  
...  

Temperate rocky reefs in the SW Atlantic are productive areas that support highly diverse communities of invertebrates, algae and fishes. Rocky outcrops form complex structures which offer a diversity of microhabitats that lead to a great variety of co-existing species. Subtidal biodiversity within the Natural Protected Area Península Valdés is largely unexplored and studies are mainly limited to fish. A total of 560 high definition photoquadrats from seven rocky reefs (1-25 m depth) at Punta Pardelas were obtained during March 2019. In total, 4491 occurrences were recorded and identified to phyla (n = 2), superclasses (n = 1), classes (n = 5), subclasses (n = 2), orders (n = 2), families (n = 1), subfamilies (n = 1), genera (n = 10) and species (n = 43) levels. This dataset was developed to provide a baseline inventory of Punta Pardelas inside the Natural Protected Area, that was only partially reported more than 50 years ago. Such data represent the first step towards monitoring these less-accessible ecosystems. Most of the available information about Atlantic Patagonian marine biodiversity is related to rocky intertidal communities or rocky reef fish communities. Despite having more than 4000 km of coastline, in the last 20 years only four studies have focused on subtidal benthic communities from shallow rocky reefs in Argentina (Genzano et al. 2011, Rechimont et al. 2013, Bravo et al. 2015, Bravo et al. 2020a). However, none of them described the epi-benthic community of different surface orientations on the rocky reefs. This dataset includes several surface orientations (i.e. horizontal, vertical, overhang and cave floor) and their microhabitats. We found almost double the number of taxa previously reported for the area. Through stratified sampling of different surface orientations, we recorded species that are often overlooked and thus registered as part of the existing biodiversity. For example, overhang surfaces in our study showed a unique assemblage and a great diversity of sponges. This work will be valuable as baseline information that is currently out of date in Nuevo Gulf rocky reefs.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12549
Author(s):  
Leah M. Harper ◽  
Lindsay K. Huebner ◽  
Elijah D. O’Cain ◽  
Rob Ruzicka ◽  
Daniel F. Gleason ◽  
...  

Quantifying recruitment of corals is important for evaluating their capacity to recover after disturbances through natural processes, yet measuring recruitment rates in situ is challenging due to the minute size of the study organism and the complexity of benthic communities. Settlement tiles are widely used in studies of coral recruitment because they can be viewed under a microscope to enhance accuracy, but methodological choices such as the rugosity of tiles used and when and how to scan tiles for recruits post-collection may cause inconsistencies in measured recruitment rates. We deployed 2,880 tiles with matching rugosity on top and bottom surfaces to 30 sites along the Florida Reef Tract for year-long saturations during a three year study. We scanned the top and bottom surfaces of the same tiles for scleractinian recruits before (live scans) and after treating tiles with sodium hypochlorite (corallite scans). Recruit counts were higher in corallite than live scans, indicating that scleractinian recruitment rates should not be directly compared between studies using live scans and those scanning tiles which have been processed to remove fouling material. Recruit counts also were higher on tile tops in general, but the proportion of settlement to the top and bottom surfaces varied significantly by scleractinian family. Thus, biases may be introduced in recruitment datasets by differences in tile rugosity or by only scanning a subset of tile surfaces. Finally, we quantified octocoral recruitment during live scans and found they preferentially settled to tile tops. We recommend that recruitment tile studies include corallite scans for scleractinian skeletons, deploy tiles with matching rugosity on top and bottom surfaces, and scan all tile surfaces.


2021 ◽  
Vol 8 ◽  
Author(s):  
Richard S. Appeldoorn ◽  
David L. Ballantine ◽  
Milton Carlo ◽  
Juan J. Cruz Motta ◽  
Michael Nemeth ◽  
...  

There is limited information on the intra-annual variability of mesophotic coral ecosystems (MCEs), worldwide. The benthic communities, measured as % cover, of two geomorphologically different mesophotic sites (El Hoyo and Hole-in-the-Wall) were examined during 2009–2010 in southwest Puerto Rico. Depths sampled were 50 and 70 m. At each site/depth combination, two permanent transects, measuring 10-m long by 40-cm wide, were surveyed by successive photoquadrants, 0.24 m2 in area. Scleractinian corals, octocorals, macroalgae, crustose coralline algae (CCA), sponges and unconsolidated sediment were the main components along the transects. Significant community differences were observed both among sites and among depths. Differences among sites were greater at 50 m than at 70 m. The El Hoyo site at 50 m was the most divergent, and this was due to a lower coral and sponge cover and a higher algal cover (Amphiroa spp., Peyssonnelia iridescens, turf) relative to the other site/depth combinations. As a consequence, the differences in community structure with depth were larger at El Hoyo than at Hole-in-the-Wall. The communities at 70 m were distinguished from those at 50 m by the greater proportion of the corals Agaricia undata, Madracis pharensis and CCA, and a reduced cover of the cyanobacterium Schizothrix. Temporal variation in the benthic assemblages was documented throughout the year. For both mesophotic sites, the magnitude of change at 50 m was significantly greater than at 70 m. For both depths, the magnitude of change at El Hoyo was significantly greater than at Hole-in-the-Wall. All assemblages experienced almost the same temporal patterns, despite the differences in species composition across sites and depths. Changes in temporal patterns are driven by an increase in the percent cover of the macroalgae Dictyota spp., and a decrease in the percent cover of non-colonized substrata (sand, pavement or rubble). Relatively rapid, intra-annual changes are dictated by the negative correlation between cyclic Dictyota spp. cover and open substrata cover. Other observed mechanisms for rapid community changes in the photoquadrants were diseases and collapses of substrata along with their associated fauna indicating that small-scale disturbance processes may play an important role within MCEs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wilken-Jon von Appen ◽  
Anya M. Waite ◽  
Melanie Bergmann ◽  
Christina Bienhold ◽  
Olaf Boebel ◽  
...  

AbstractThe ocean moderates the world’s climate through absorption of heat and carbon, but how much carbon the ocean will continue to absorb remains unknown. The North Atlantic Ocean west (Baffin Bay/Labrador Sea) and east (Fram Strait/Greenland Sea) of Greenland features the most intense absorption of anthropogenic carbon globally; the biological carbon pump (BCP) contributes substantially. As Arctic sea-ice melts, the BCP changes, impacting global climate and other critical ocean attributes (e.g. biodiversity). Full understanding requires year-round observations across a range of ice conditions. Here we present such observations: autonomously collected Eulerian continuous 24-month time-series in Fram Strait. We show that, compared to ice-unaffected conditions, sea-ice derived meltwater stratification slows the BCP by 4 months, a shift from an export to a retention system, with measurable impacts on benthic communities. This has implications for ecosystem dynamics in the future warmer Arctic where the seasonal ice zone is expected to expand.


2021 ◽  
Vol 8 ◽  
Author(s):  
Savannah L. Goode ◽  
Ashley A. Rowden ◽  
David A. Bowden ◽  
Malcolm R. Clark ◽  
Fabrice Stephenson

Seamounts are common features of the deep seafloor that are often associated with aggregations of mega-epibenthic fauna, including deep-sea corals and sponges. Globally, many seamounts also host abundant fish stocks, supporting commercial bottom trawl fisheries that impact non-target benthic species through damage and/or removal of these non-target species. However, the effects of bottom trawling on seamount benthic communities, as well as their recovery potential, will vary over the total seamount area because of differences in within seamount habitat and community structure. It is therefore important to understand fine-scale community dynamics, community patch characteristics, and the environmental drivers contributing to these patterns to improve habitat mapping efforts on seamounts and to determine the potential for benthic communities on seamounts to recover from fishing disturbances. Here we analysed the structure and distribution of mega-epibenthic communities on two New Zealand seamounts with different physical environments to determine which environmental variables best correlated with variation in community structure within each seamount. We used the identified environmental variables to predict the distribution of communities beyond the sampled areas, then described the spatial patterns and patch characteristics of the predicted community distributions. We found the environmental variables that best explained variations in community structure differed between the seamounts and at different spatial scales. These differences were reflected in the distribution models: communities on one seamount were predicted to form bands with depth, while on the other seamount communities varied mostly with broadscale aspect and the presence of small pinnacles. The number and size of community patches, inter-patch distances, and patch connectedness were found to differ both within and between seamounts. These types of analyses and results can be used to inform the spatial management of seamount ecosystems.


Sign in / Sign up

Export Citation Format

Share Document