living shorelines
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 33)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Vol 176 ◽  
pp. 106511
Author(s):  
Amanda G. Guthrie ◽  
Donna Marie Bilkovic ◽  
Molly Mitchell ◽  
Randolph Chambers ◽  
Jessica S. Thompson ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (21) ◽  
pp. 11704
Author(s):  
Rebecca M. Fillyaw ◽  
Melinda J. Donnelly ◽  
Jason W. Litwak ◽  
Julia L. Rifenberg ◽  
Linda J. Walters

By combatting erosion and increasing habitat, mangrove living shorelines are an effective alternative to hard-armoring in tropical and subtropical areas. An experimental red mangrove living shoreline was deployed within Mosquito Lagoon, Florida, using a factorial design to test the impact of mangrove age, breakwater presence, and mangrove placement on mangrove survival within the first year of deployment. Mixed mangrove age treatments were included to identify if seedling (11-month-old) survival could be enhanced by the presence of transitional (23-month-old) and adult (35 to 47-month-old) mangroves. Environmental factors were monitored to detect possible causes of mangrove mortalities. Approximately half (50.6%) of mangroves died, and of those, 90.7% occurred within the annual high-water season, and 88.9% showed signs of flooding stress. Planting seedlings haphazardly among older mangroves did not attenuate enough wave energy to significantly increase seedling survival. Breakwaters alleviated stress through a reduction in water velocity and wave height, increasing the odds of survival by 197% and 437% when mangroves were planted in the landward and seaward rows, respectively. Compared to seedlings, deployment of adult mangroves increased survival odds by 1087%. Collectively, our results indicate that sites with a high-water season should utilize a breakwater structure and mangroves with a woody stem.


2021 ◽  
Vol 8 ◽  
Author(s):  
Iacopo Vona ◽  
Cindy M. Palinkas ◽  
William Nardin

Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection.


2021 ◽  
Vol 167 ◽  
pp. 106255
Author(s):  
Jason D. Toft ◽  
Megan N. Dethier ◽  
Emily R. Howe ◽  
Emily V. Buckner ◽  
Jeffery R. Cordell
Keyword(s):  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11815
Author(s):  
Robert E. Isdell ◽  
Donna Marie Bilkovic ◽  
Amanda G. Guthrie ◽  
Molly M. Mitchell ◽  
Randolph M. Chambers ◽  
...  

Nature-based shoreline protection provides a welcome class of adaptations to promote ecological resilience in the face of climate change. Along coastlines, living shorelines are among the preferred adaptation strategies to both reduce erosion and provide ecological functions. As an alternative to shoreline armoring, living shorelines are viewed favorably among coastal managers and some private property owners, but they have yet to undergo a thorough examination of how their levels of ecosystem functions compare to their closest natural counterpart: fringing marshes. Here, we provide a synthesis of results from a multi-year, large-spatial-scale study in which we compared numerous ecological metrics (including habitat provision for fish, invertebrates, diamondback terrapin, and birds, nutrient and carbon storage, and plant productivity) measured in thirteen pairs of living shorelines and natural fringing marshes throughout coastal Virginia, USA. Living shorelines were composed of marshes created by bank grading, placement of sand fill for proper elevations, and planting of S. alterniflora and S. patens, as well as placement of a stone sill seaward and parallel to the marsh to serve as a wave break. Overall, we found that living shorelines were functionally equivalent to natural marshes in nearly all measured aspects, except for a lag in soil composition due to construction of living shoreline marshes with clean, low-organic sands. These data support the prioritization of living shorelines as a coastal adaptation strategy.


2021 ◽  
Author(s):  
Andrew J Brinton

Abstract Hurricane severity and frequency have been exacerbated by 190 years of anthropogenic climate change. In 2012, Superstorm Sandy decimated Long Island, a 190-kilometer-long island in southeast New York, with up to 4 meters of saltwater inundation due to storm surge, resulting in the highest levels of destruction since the 1938 “Long Island Express.” Sandy was the fifth most costly hurricane on record, after Katrina in 2005, and Harvey, Maria, and Irma in 2017. Synthetic storm-surge barriers such as concrete-and-steel tidal gates are exorbitantly costly to construct and decrease biodiversity by barring habitat expansion. Natural storm barriers, termed “living shorelines,” have recently been suggested as an alternative, owing to their structurally resilient and regenerative properties. Coastal marshes, one type of natural barrier, are key to holding back storm surge; however, the contiguous United States lost coastal wetlands at 0.15 percent per year from 1998 through 2009, the final year for which the data were available. This study investigated ribbed mussels (Geukensia demissa) as a potential regenerative component of living shorelines. Transects and environmental energetic measurements were applied to draw conclusions between mussel abundance and scarcity and coastline erosion in the waters off Freeport, Long Island. It was discerned that the current rate of marsh disintegration on Long Island is 6.5 to 20 times greater than the national rate, as last measured a decade ago, and certain Long Island regions are projected to lose all coastal wetlands by 2079.


Sign in / Sign up

Export Citation Format

Share Document