scholarly journals Single amino acid substitution of VP1 N17D or VP2 H145Y confers acid-resistant phenotype of type Asia1 foot-and-mouth disease virus

2014 ◽  
Vol 29 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Haiwei Wang ◽  
Shanshan Song ◽  
Jianxiong Zeng ◽  
Guohui Zhou ◽  
Decheng Yang ◽  
...  
2010 ◽  
Vol 84 (6) ◽  
pp. 2902-2912 ◽  
Author(s):  
Miguel A. Martín-Acebes ◽  
Verónica Rincón ◽  
Rosario Armas-Portela ◽  
Mauricio G. Mateu ◽  
Francisco Sobrino

ABSTRACT The acid-dependent disassembly of foot-and-mouth disease virus (FMDV) is required for viral RNA release from endosomes to initiate replication. Although the FMDV capsid disassembles at acid pH, mutants escaping inhibition by NH4Cl of endosomal acidification were found to constitute about 10% of the viruses recovered from BHK-21 cells infected with FMDV C-S8c1. For three of these mutants, the degree of NH4Cl resistance correlated with the sensitivity of the virion to acid-induced inactivation of its infectivity. Capsid sequencing revealed the presence in each of these mutants of a different amino acid substitution (VP3 A123T, VP3 A118V, and VP2 D106G) that affected a highly conserved residue among FMDVs located close to the capsid interpentameric interfaces. These residues may be involved in the modulation of the acid-induced dissociation of the FMDV capsid. The substitution VP3 A118V present in mutant c2 was sufficient to confer full resistance to NH4Cl and concanamycin A (a V-ATPase inhibitor that blocks endosomal acidification) as well as to increase the acid sensitivity of the virion to an extent similar to that exhibited by mutant c2 relative to the sensitivity of the parental virus C-S8c1. In addition, the increased propensity to dissociation into pentameric subunits of virions bearing substitution VP3 A118V indicates that this replacement also facilitates the dissociation of the FMDV capsid.


2003 ◽  
Vol 77 (2) ◽  
pp. 1219-1226 ◽  
Author(s):  
Cecilia Tami ◽  
Oscar Taboga ◽  
Analía Berinstein ◽  
José I. Núñez ◽  
Eduardo L. Palma ◽  
...  

ABSTRACT In this work we analyze the antigenic properties and the stability in cell culture of virus mutants recovered upon challenge of peptide-vaccinated cattle with foot-and-mouth disease virus (FMDV) C3 Arg85. Previously, we showed that a significant proportion of 29 lesions analyzed (41%) contained viruses with single amino acid replacements (R141G, L144P, or L147P) within a major antigenic site located at the G-H loop of VP1, known to participate also in interactions with integrin receptors. Here we document that no replacements at this site were found in viruses from 12 lesions developed in six control animals upon challenge with FMDV C3 Arg85. Sera from unprotected, vaccinated animals exhibited poor neutralization titers against mutants recovered from them. Sequence analyses of the viruses recovered upon 10 serial passages in BHK-21 and FBK-2 cells in the presence of preimmune (nonneutralizing) sera revealed that mutants reverted to the parental sequence, suggesting an effect of the amino acid replacements in the interaction of the viruses with cells. Parallel passages in the presence of subneutralizing concentrations of immune homologous sera resulted in the maintenance of mutations R141G and L147P, while mutation L144P reverted to the C3 Arg85 sequence. Reactivity with a panel of FMDV type C-specific monoclonal antibodies indicated that mutant viruses showed altered antigenicity. These results suggest that the selective pressure exerted by host humoral immune response can play a role in both the selection and stability of antigenic FMDV variants and that such variants can manifest alterations in cell tropism.


2012 ◽  
Vol 12 (1) ◽  
pp. 363-377 ◽  
Author(s):  
Yu Ye ◽  
Guangrong Yan ◽  
Yongwen Luo ◽  
Tiezhu Tong ◽  
Xiangtao Liu ◽  
...  

2018 ◽  
Vol 92 (8) ◽  
Author(s):  
Jonas Kjær ◽  
Graham J. Belsham

ABSTRACTFoot-and-mouth disease virus (FMDV) has a positive-sense single-stranded RNA (ssRNA) genome that includes a single, large open reading frame encoding a polyprotein. The cotranslational “cleavage” of this polyprotein at the 2A/2B junction is mediated by the 2A peptide (18 residues in length) using a nonproteolytic mechanism termed “ribosome skipping” or “StopGo.” Multiple variants of the 2A polypeptide with this property among the picornaviruses share a conserved C-terminal motif [D(V/I)E(S/T)NPG↓P]. The impact of 2A modifications within this motif on FMDV protein synthesis, polyprotein processing, and virus viability were investigated. Amino acid substitutions are tolerated at residues E14, S15, and N16within the 2A sequences of infectious FMDVs despite their reported “cleavage” efficiencies at the 2A/2B junction of only ca. 30 to 50% compared to that of the wild type (wt). In contrast, no viruses containing substitutions at residue P17, G18, or P19, which displayed little or no “cleavage” activityin vitro, were rescued, but wt revertants were obtained. The 2A substitutions impaired the replication of an FMDV replicon. Using transient-expression assays, it was shown that certain amino acid substitutions at residues E14, S15, N16, and P19resulted in partial “cleavage” of a protease-free polyprotein, indicating that these specific residues are not essential for cotranslational “cleavage.” Immunofluorescence studies, using full-length FMDV RNA transcripts encoding mutant 2A peptides, indicated that the 2A peptide remained attached to adjacent proteins, presumably 2B. These results show that efficient “cleavage” at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity does not appear to be essential for the viability of FMDV.IMPORTANCEFoot-and-mouth disease virus (FMDV) causes one of the most economically important diseases of farm animals. Cotranslational “cleavage” of the FMDV polyprotein precursor at the 2A/2B junction, termed StopGo, is mediated by the short 2A peptide through a nonproteolytic mechanism which leads to release of the nascent protein and continued translation of the downstream sequence. Improved understanding of this process will not only give a better insight into how this peptide influences the FMDV replication cycle but may also assist the application of this sequence in biotechnology for the production of multiple proteins from a single mRNA. Our data show that single amino acid substitutions in the 2A peptide can have a major influence on viral protein synthesis, virus viability, and polyprotein processing. They also indicate that efficient “cleavage” at the 2A/2B junction is required for optimal virus replication. However, maximal StopGo activity is not essential for the viability of FMDV.


Sign in / Sign up

Export Citation Format

Share Document